Artificial neurons made of active matter memristors.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2025-07-03 DOI:10.1039/d5sm00402k
Jianli Liu, Marco G Mazza, Yunyun Li, Fabio Marchesoni, Sergey Savel'ev
{"title":"Artificial neurons made of active matter memristors.","authors":"Jianli Liu, Marco G Mazza, Yunyun Li, Fabio Marchesoni, Sergey Savel'ev","doi":"10.1039/d5sm00402k","DOIUrl":null,"url":null,"abstract":"<p><p>In this study we propose a new class of artificial neurons and memristors made of active chiral particles. We formulate a single-particle model to simulate active chiral particle behavior in a two-terminal device, with resistance depending on the particle position. We create a dynamical phase map connecting particle trajectories and memristor electrical properties to applied voltage and particle's self-propulsion parameters. Analysis of spiking modes in artificial neurons, with and without noise, shows the memristor switches between high- and low-resistance states, exhibiting stable limit cycles in the position-voltage phase response.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00402k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study we propose a new class of artificial neurons and memristors made of active chiral particles. We formulate a single-particle model to simulate active chiral particle behavior in a two-terminal device, with resistance depending on the particle position. We create a dynamical phase map connecting particle trajectories and memristor electrical properties to applied voltage and particle's self-propulsion parameters. Analysis of spiking modes in artificial neurons, with and without noise, shows the memristor switches between high- and low-resistance states, exhibiting stable limit cycles in the position-voltage phase response.

由活性物质忆阻器制成的人工神经元。
在这项研究中,我们提出了一类新的由活性手性粒子制成的人工神经元和忆阻器。我们建立了一个单粒子模型来模拟活跃的手性粒子在一个双端器件中的行为,其中电阻取决于粒子的位置。我们创建了一个动态相图,将粒子轨迹和忆阻器的电性能与外加电压和粒子的自推进参数联系起来。对人工神经元尖峰模式的分析表明,在有噪声和无噪声的情况下,忆阻器在高电阻和低电阻状态之间切换,在位置电压相位响应中表现出稳定的极限环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信