Quantum Simulation of Molecular Dynamics Processes─A Benchmark Study Using a Classical Simulator and Present-Day Quantum Hardware.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-07-17 Epub Date: 2025-07-03 DOI:10.1021/acs.jpca.5c02029
Tamila Kuanysheva, Brian Kendrick, Lukasz Cincio, Dmitri Babikov
{"title":"Quantum Simulation of Molecular Dynamics Processes─A Benchmark Study Using a Classical Simulator and Present-Day Quantum Hardware.","authors":"Tamila Kuanysheva, Brian Kendrick, Lukasz Cincio, Dmitri Babikov","doi":"10.1021/acs.jpca.5c02029","DOIUrl":null,"url":null,"abstract":"<p><p>We explore how the fundamental problems in quantum molecular dynamics can be modeled using classical simulators (emulators) of quantum computers and the actual quantum hardware available to us today. The list of problems we tackle includes propagation of a free wave packet, vibration of a harmonic oscillator, and tunneling through a barrier. Each of these problems starts with the initial wave packet setup. Although Qiskit provides a general method for initializing wave functions, in most cases it generates deep quantum circuits. While these circuits perform well on noiseless simulators, they suffer from excessive noise on quantum hardware. To overcome this issue, we designed a shallower quantum circuit for preparing a Gaussian-like initial wave packet, which improves the performance of real hardware. Next, quantum circuits are implemented to apply the kinetic and potential energy operators for the evolution of a wave function over time. The results of our modeling on classical emulators of quantum hardware agree perfectly with the results obtained using the traditional (classical) methods. This serves as a benchmark and demonstrates that the quantum algorithms and Qiskit codes we developed are accurate. However, the results obtained on the actual quantum hardware available today, such as IBM's superconducting qubits and IonQ's trapped ions, indicate large discrepancies due to hardware limitations. This work highlights both the potential and challenges of using quantum computers to solve fundamental quantum molecular dynamics problems.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"6470-6481"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c02029","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We explore how the fundamental problems in quantum molecular dynamics can be modeled using classical simulators (emulators) of quantum computers and the actual quantum hardware available to us today. The list of problems we tackle includes propagation of a free wave packet, vibration of a harmonic oscillator, and tunneling through a barrier. Each of these problems starts with the initial wave packet setup. Although Qiskit provides a general method for initializing wave functions, in most cases it generates deep quantum circuits. While these circuits perform well on noiseless simulators, they suffer from excessive noise on quantum hardware. To overcome this issue, we designed a shallower quantum circuit for preparing a Gaussian-like initial wave packet, which improves the performance of real hardware. Next, quantum circuits are implemented to apply the kinetic and potential energy operators for the evolution of a wave function over time. The results of our modeling on classical emulators of quantum hardware agree perfectly with the results obtained using the traditional (classical) methods. This serves as a benchmark and demonstrates that the quantum algorithms and Qiskit codes we developed are accurate. However, the results obtained on the actual quantum hardware available today, such as IBM's superconducting qubits and IonQ's trapped ions, indicate large discrepancies due to hardware limitations. This work highlights both the potential and challenges of using quantum computers to solve fundamental quantum molecular dynamics problems.

分子动力学过程的量子模拟──基于经典模拟器和现代量子硬件的基准研究。
我们探索如何使用量子计算机的经典模拟器(模拟器)和我们今天可用的实际量子硬件来模拟量子分子动力学中的基本问题。我们要解决的问题包括自由波包的传播,谐振子的振动,以及穿过屏障的隧道。这些问题都是从初始波包设置开始的。尽管Qiskit提供了初始化波函数的通用方法,但在大多数情况下,它会生成深度量子电路。虽然这些电路在无噪声模拟器上表现良好,但它们在量子硬件上受到过多噪声的影响。为了克服这个问题,我们设计了一个较浅的量子电路来制备类高斯初始波包,从而提高了实际硬件的性能。接下来,实现量子电路来应用波函数随时间演化的动能和势能算符。我们在经典量子硬件仿真器上的建模结果与使用传统(经典)方法得到的结果完全一致。这可以作为一个基准,证明我们开发的量子算法和Qiskit代码是准确的。然而,在目前可用的实际量子硬件上获得的结果,如IBM的超导量子比特和IonQ的捕获离子,表明由于硬件限制而存在很大差异。这项工作突出了使用量子计算机解决基本量子分子动力学问题的潜力和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信