Optimized Backstepping Fuzzy Sliding Mode Controller for Trajectory Tracking of Mobile Manipulator

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Geta Menyechel Eneyew, Wubshet Ayalew Asfaw, Chala Merga Abdissa
{"title":"Optimized Backstepping Fuzzy Sliding Mode Controller for Trajectory Tracking of Mobile Manipulator","authors":"Geta Menyechel Eneyew,&nbsp;Wubshet Ayalew Asfaw,&nbsp;Chala Merga Abdissa","doi":"10.1002/eng2.70269","DOIUrl":null,"url":null,"abstract":"<p>This article presents a robust control technique for a Mobile Manipulator (MM), consisting of a robotic manipulator mounted on a mobile robot capable of operating in diverse environments such as land, air, space, or underwater. By leveraging the platform's mobility, the workspace of the manipulator is significantly expanded, allowing for optimal placement and enhanced task execution. To simultaneously control the end-effector motion and platform velocity, a two-step control approach is proposed. First, kinematic velocity control generates desired trajectories for the system. Second, a fuzzy sliding mode torque controller, integrated with backstepping, ensures the end-effector position and platform velocity converge to these trajectories. The control parameters are optimized using Particle Swarm Optimization (PSO), with stability guaranteed through Lyapunov theory. Simulation results in MATLAB/SIMULINK demonstrate that the Optimized Backstepping Fuzzy Sliding Mode Control (OBFSMC) outperforms the Backstepping Sliding Mode Control (BSMC) in tracking accuracy, achieving a 31.6% performance improvement. The proposed controller effectively mitigates external disturbances and tolerates parametric uncertainties, confirming its robustness and efficiency in trajectory tracking under challenging conditions.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 7","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70269","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a robust control technique for a Mobile Manipulator (MM), consisting of a robotic manipulator mounted on a mobile robot capable of operating in diverse environments such as land, air, space, or underwater. By leveraging the platform's mobility, the workspace of the manipulator is significantly expanded, allowing for optimal placement and enhanced task execution. To simultaneously control the end-effector motion and platform velocity, a two-step control approach is proposed. First, kinematic velocity control generates desired trajectories for the system. Second, a fuzzy sliding mode torque controller, integrated with backstepping, ensures the end-effector position and platform velocity converge to these trajectories. The control parameters are optimized using Particle Swarm Optimization (PSO), with stability guaranteed through Lyapunov theory. Simulation results in MATLAB/SIMULINK demonstrate that the Optimized Backstepping Fuzzy Sliding Mode Control (OBFSMC) outperforms the Backstepping Sliding Mode Control (BSMC) in tracking accuracy, achieving a 31.6% performance improvement. The proposed controller effectively mitigates external disturbances and tolerates parametric uncertainties, confirming its robustness and efficiency in trajectory tracking under challenging conditions.

Abstract Image

移动机械臂轨迹跟踪的优化反步模糊滑模控制器
本文介绍了一种针对移动机械手(MM)的鲁棒控制技术,该技术由安装在能够在陆地、空中、太空或水下等多种环境中工作的移动机器人上的机器人机械手组成。通过利用平台的移动性,机械手的工作空间得到了显着扩展,允许最佳放置和增强任务执行。为了同时控制末端执行器运动和平台速度,提出了一种两步控制方法。首先,运动速度控制生成系统所需的轨迹。其次,将模糊滑模转矩控制器与反推相结合,确保末端执行器位置和平台速度收敛于这些轨迹。采用粒子群算法优化控制参数,并通过李亚普诺夫理论保证系统的稳定性。MATLAB/SIMULINK仿真结果表明,优化后的Backstepping模糊滑模控制(OBFSMC)在跟踪精度上优于Backstepping滑模控制(BSMC),性能提高31.6%。所提出的控制器能有效地减轻外部干扰和容忍参数不确定性,证实了其在具有挑战性条件下轨迹跟踪的鲁棒性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信