Submodular + Supermodular function maximization with knapsack constraint

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Majun Shi , Zishen Yang , Wei Wang
{"title":"Submodular + Supermodular function maximization with knapsack constraint","authors":"Majun Shi ,&nbsp;Zishen Yang ,&nbsp;Wei Wang","doi":"10.1016/j.dam.2025.06.062","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate a class of non-submodular function optimization problems, specifically maximizing the sum of a normalized monotone submodular function <span><math><mi>f</mi></math></span> and a normalized monotone supermodular function <span><math><mi>g</mi></math></span> under a knapsack constraint. By utilizing the total curvature <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> of <span><math><mi>f</mi></math></span> and the supermodular curvature <span><math><msup><mrow><mi>κ</mi></mrow><mrow><mi>g</mi></mrow></msup></math></span> of <span><math><mi>g</mi></math></span>, we demonstrate that this problem can achieve a near-optimal solution through three approaches: a greedy algorithm, an iterated submodular+modular procedure and a sandwich method. In particular, we prove that both the greedy algorithm and the iterated submodular+modular procedure provide an approximation guarantee of <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>κ</mi></mrow><mrow><mi>g</mi></mrow></msup><mo>)</mo></mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></msup><mo>)</mo></mrow></mrow></math></span>, while the sandwich method achieves a <span><math><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>κ</mi></mrow><mrow><mi>g</mi></mrow></msup><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow><mrow><mi>e</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>-approximation ratio. All proposed algorithms run in polynomial time, and parameters such as <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> and <span><math><msup><mrow><mi>κ</mi></mrow><mrow><mi>g</mi></mrow></msup></math></span> can be computed efficiently in linear time. Additionally, all three algorithms yield a <span><math><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>κ</mi></mrow><mrow><mi>g</mi></mrow></msup><mo>)</mo></mrow></math></span>-approximation performance for knapsack-constrained monotone supermodular function maximization. Finally, we empirically test our first two algorithms on a constructed application. Although both algorithms have the same theoretical guarantee, their practical behavior differs significantly, leading to distinct solutions.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 113-133"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003786","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate a class of non-submodular function optimization problems, specifically maximizing the sum of a normalized monotone submodular function f and a normalized monotone supermodular function g under a knapsack constraint. By utilizing the total curvature κf of f and the supermodular curvature κg of g, we demonstrate that this problem can achieve a near-optimal solution through three approaches: a greedy algorithm, an iterated submodular+modular procedure and a sandwich method. In particular, we prove that both the greedy algorithm and the iterated submodular+modular procedure provide an approximation guarantee of 1κf(1e(1κg)κf), while the sandwich method achieves a (1κg)(1κfe)-approximation ratio. All proposed algorithms run in polynomial time, and parameters such as κf and κg can be computed efficiently in linear time. Additionally, all three algorithms yield a (1κg)-approximation performance for knapsack-constrained monotone supermodular function maximization. Finally, we empirically test our first two algorithms on a constructed application. Although both algorithms have the same theoretical guarantee, their practical behavior differs significantly, leading to distinct solutions.
背包约束下的次模+超模函数最大化
研究了一类非次模函数优化问题,特别是在背包约束下的归一化单调次模函数f和归一化单调超模函数g的和的最大化问题。利用f的总曲率κf和g的超模曲率κg,我们证明了该问题可以通过贪心算法、迭代次模+模过程和三明治法三种方法获得近最优解。特别地,我们证明了贪心算法和迭代子模+模过程都提供了1κf(1−e−(1−κg)κf)的逼近保证,而三明治方法实现了(1−κg)(1−κfe)的逼近比。所有算法都在多项式时间内运行,而κf和κg等参数可以在线性时间内有效地计算。此外,这三种算法对于背包约束的单调超模函数最大化产生(1−κg)近似性能。最后,我们在一个构造好的应用程序上对前两种算法进行了实证测试。虽然两种算法的理论保证相同,但它们的实际行为却有很大的不同,导致了不同的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信