Jingwei Ma, Long Chen, Yaning Ji, Hui Sun, Ying Han, Liang Zhu, Peng Bi, Qiulai He
{"title":"Integration of partial nitrification, endogenous denitrification and anaerobic ammonia oxidation in low dissolved oxygen anaerobic/oxic/anoxic-aerobic granular sludge reactor treating low carbon to nitrogen ratios wastewater","authors":"Jingwei Ma, Long Chen, Yaning Ji, Hui Sun, Ying Han, Liang Zhu, Peng Bi, Qiulai He","doi":"10.1016/j.biortech.2025.132923","DOIUrl":null,"url":null,"abstract":"<div><div>The anaerobic/aerobic/anoxic-aerobic granular sludge (AOA-AGS) process effectively removes nitrogen while tolerating limited oxygen and carbon. However, integrating anaerobic ammonia oxidation (Anammox), which thrives under low organic carbon and oxygen conditions, with AOA-AGS remains challenging. This study investigated nitrogen removal performance and community changes in an AOA-AGS sequencing batch reactor with low carbon to nitrogen ratios (C/N) wastewater and reduced dissolved oxygen (DO) from 5-7 mg/L to 0.5 ± 0.2 mg/L. The total inorganic nitrogen removal rate stabilized at 82 ± 9 % under low DO, driven by partial nitrification and endogenous denitrification through dominant denitrifying glycogen-accumulating organisms (DGAOs), such as <em>Candidatus_Competibacter</em> (43.09 %). Anammox bacteria (mainly <em>Candidatus_Brocadia</em>) were enriched under long solids retention time (128 days) and low DO, synergizing with DGAOs for enhanced nitrogen removal. This study demonstrated that AOA-AGS under low DO enables efficient nitrogen removal through the synergistic endogenous denitrification by DGAOs and Anammox in low C/N wastewater, offering a sustainable strategy.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"435 ","pages":"Article 132923"},"PeriodicalIF":9.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425008892","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The anaerobic/aerobic/anoxic-aerobic granular sludge (AOA-AGS) process effectively removes nitrogen while tolerating limited oxygen and carbon. However, integrating anaerobic ammonia oxidation (Anammox), which thrives under low organic carbon and oxygen conditions, with AOA-AGS remains challenging. This study investigated nitrogen removal performance and community changes in an AOA-AGS sequencing batch reactor with low carbon to nitrogen ratios (C/N) wastewater and reduced dissolved oxygen (DO) from 5-7 mg/L to 0.5 ± 0.2 mg/L. The total inorganic nitrogen removal rate stabilized at 82 ± 9 % under low DO, driven by partial nitrification and endogenous denitrification through dominant denitrifying glycogen-accumulating organisms (DGAOs), such as Candidatus_Competibacter (43.09 %). Anammox bacteria (mainly Candidatus_Brocadia) were enriched under long solids retention time (128 days) and low DO, synergizing with DGAOs for enhanced nitrogen removal. This study demonstrated that AOA-AGS under low DO enables efficient nitrogen removal through the synergistic endogenous denitrification by DGAOs and Anammox in low C/N wastewater, offering a sustainable strategy.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.