Biochar-microorganisms hybrid enhanced anaerobic digestion: Innovative insight considering electron transfer potential and functional network of microorganisms

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Yun He , Zhi Wang , Caihong Shen , Shilei Wang , Yiyang Liu , Xiaoyong Li , Xueke Bai , Junhao Zhao , Xiaoling Zhao , Xingyao Meng , Yafan Cai , Jingliang Xu , Hanjie Ying
{"title":"Biochar-microorganisms hybrid enhanced anaerobic digestion: Innovative insight considering electron transfer potential and functional network of microorganisms","authors":"Yun He ,&nbsp;Zhi Wang ,&nbsp;Caihong Shen ,&nbsp;Shilei Wang ,&nbsp;Yiyang Liu ,&nbsp;Xiaoyong Li ,&nbsp;Xueke Bai ,&nbsp;Junhao Zhao ,&nbsp;Xiaoling Zhao ,&nbsp;Xingyao Meng ,&nbsp;Yafan Cai ,&nbsp;Jingliang Xu ,&nbsp;Hanjie Ying","doi":"10.1016/j.biortech.2025.132928","DOIUrl":null,"url":null,"abstract":"<div><div>Immobilizing microorganisms on biochar is potential method to regulate the electron transfer capacity. This study developed biochar-microorganism hybrids via pre-coupling for anaerobic digestion (AD) of high-load organic wastewater. Compared with uncoupled groups, the methane yield of pre-coupled groups increased by 26.4 %-36.9 %, the lag phase shortened from 4.45-5.62 days to 0.85–1.06 days, and soluble chemical oxygen demand removal efficiency increased from 60.8 %-63.8 % to 92.4 %-96.4 %. Microscopic analysis showed that pre-coupling enhanced microbial activity and abundance, reduced the bacteria-archaea spatial distance, and promoted direct interspecies electron transfer. Synergistic microbes (<em>Syntrophobacter</em> and <em>Syntrophomonas</em>) were enriched, potentially establishing syntrophic relationships with methanogens to promote organic degradation. Functional prediction indicated the potential abundance of metabolic modules including M00009, M00173, M00144, M00620, and M00374 increased. These findings provided microscopic explanations for the enhanced AD performance. The developed biochar-microorganism hybrid demonstrated the potential to reduce hydraulic retention time and improve AD efficiency, offering valuable guidance for practical applications.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"435 ","pages":"Article 132928"},"PeriodicalIF":9.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425008946","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Immobilizing microorganisms on biochar is potential method to regulate the electron transfer capacity. This study developed biochar-microorganism hybrids via pre-coupling for anaerobic digestion (AD) of high-load organic wastewater. Compared with uncoupled groups, the methane yield of pre-coupled groups increased by 26.4 %-36.9 %, the lag phase shortened from 4.45-5.62 days to 0.85–1.06 days, and soluble chemical oxygen demand removal efficiency increased from 60.8 %-63.8 % to 92.4 %-96.4 %. Microscopic analysis showed that pre-coupling enhanced microbial activity and abundance, reduced the bacteria-archaea spatial distance, and promoted direct interspecies electron transfer. Synergistic microbes (Syntrophobacter and Syntrophomonas) were enriched, potentially establishing syntrophic relationships with methanogens to promote organic degradation. Functional prediction indicated the potential abundance of metabolic modules including M00009, M00173, M00144, M00620, and M00374 increased. These findings provided microscopic explanations for the enhanced AD performance. The developed biochar-microorganism hybrid demonstrated the potential to reduce hydraulic retention time and improve AD efficiency, offering valuable guidance for practical applications.

Abstract Image

生物炭-微生物混合增强厌氧消化:考虑电子传递电位和微生物功能网络的创新见解
在生物炭上固定化微生物是调节电子传递能力的一种有潜力的方法。本研究通过预耦合的方法开发了生物炭-微生物复合材料,用于高负荷有机废水的厌氧消化。与未偶联组相比,预偶联组甲烷产率提高26.4% ~ 36.9%,滞后期由4.45 ~ 5.62 d缩短至0.85 ~ 1.06 d,可溶性化学需氧量去除率由60.8% ~ 63.8%提高至92.4% ~ 96.4%。微观分析表明,预偶联增强了微生物活性和丰度,减小了细菌-古细菌的空间距离,促进了种间电子的直接传递。协同微生物(Syntrophobacter和Syntrophomonas)富集,可能与产甲烷菌建立共生关系,促进有机降解。功能预测显示M00009、M00173、M00144、M00620和M00374等代谢模块的潜在丰度增加。这些发现为增强AD性能提供了微观解释。所开发的生物炭-微生物混合物具有缩短水力滞留时间和提高AD效率的潜力,对实际应用具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信