Enhanced switching characteristics of circular-shaped double-gate Si-doped MoS2 TFET for future high-speed applications

IF 3 Q2 PHYSICS, CONDENSED MATTER
Shabya Gupta, Madhulika Verma, Sachin Agrawal
{"title":"Enhanced switching characteristics of circular-shaped double-gate Si-doped MoS2 TFET for future high-speed applications","authors":"Shabya Gupta,&nbsp;Madhulika Verma,&nbsp;Sachin Agrawal","doi":"10.1016/j.micrna.2025.208226","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a novel steep subthreshold swing (SS) circular-shaped double gate silicon-doped molybdenum disulfide (MoS<sub>2</sub>) TFET. In the proposed device, initially the Si-doped MoS<sub>2</sub> is used in the channel, which is further extended towards the source side to enhance the SS and <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>N</mi></mrow></msub><mo>/</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>F</mi><mi>F</mi></mrow></msub></mrow></math></span>. The simulation results show that these modifications improve SS and <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>N</mi></mrow></msub><mo>/</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>F</mi><mi>F</mi></mrow></msub></mrow></math></span> by 1.59 and 85.4 times, respectively. Afterward, rectangular gates are replaced by circular gates removing the edge effect and further improving the SS, and <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>N</mi></mrow></msub><mo>/</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>O</mi><mi>F</mi><mi>F</mi></mrow></msub></mrow></math></span> ratio to 5.8 mV/dec and <span><math><mrow><mn>6</mn><mo>.</mo><mn>6</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>11</mn></mrow></msup></mrow></math></span>, respectively. The overall simulation results illustrate that the proposed device offers a steep SS with significant electrostatic control, improved tunneling efficiency, and low leakage current, which makes it a potential candidate for low-power and high-speed applications. In addition, analytical modeling is also performed to verify the simulated surface potential, and it is found that the analytical results agree well with the simulated ones. Furthermore, the impact of interface trap charges (ITCs) has also been analyzed to confirm the device’s reliability. The results validate that the proposed device is immune to ITCs.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"207 ","pages":"Article 208226"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325001554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a novel steep subthreshold swing (SS) circular-shaped double gate silicon-doped molybdenum disulfide (MoS2) TFET. In the proposed device, initially the Si-doped MoS2 is used in the channel, which is further extended towards the source side to enhance the SS and ION/IOFF. The simulation results show that these modifications improve SS and ION/IOFF by 1.59 and 85.4 times, respectively. Afterward, rectangular gates are replaced by circular gates removing the edge effect and further improving the SS, and ION/IOFF ratio to 5.8 mV/dec and 6.6×1011, respectively. The overall simulation results illustrate that the proposed device offers a steep SS with significant electrostatic control, improved tunneling efficiency, and low leakage current, which makes it a potential candidate for low-power and high-speed applications. In addition, analytical modeling is also performed to verify the simulated surface potential, and it is found that the analytical results agree well with the simulated ones. Furthermore, the impact of interface trap charges (ITCs) has also been analyzed to confirm the device’s reliability. The results validate that the proposed device is immune to ITCs.
面向未来高速应用的圆形双栅掺硅MoS2 TFET的增强开关特性
本研究提出了一种新型的陡亚阈值摆幅(SS)圆形双栅掺硅二硫化钼(MoS2) TFET。在所提出的器件中,最初在通道中使用掺硅的MoS2,并进一步向源侧扩展以增强SS和ION/IOFF。仿真结果表明,改进后的SS和ION/IOFF分别提高了1.59倍和85.4倍。之后,将矩形栅极替换为圆形栅极,消除了边缘效应,进一步提高了SS和ION/IOFF比,分别达到5.8 mV/dec和6.6×1011。整体仿真结果表明,该器件具有明显的静电控制、提高的隧道效率和低泄漏电流,使其成为低功耗和高速应用的潜在候选器件。此外,还对模拟的表面电位进行了解析建模验证,发现解析结果与模拟结果吻合较好。此外,还分析了界面陷阱电荷(ITCs)的影响,以确认器件的可靠性。实验结果验证了该器件对ITCs的免疫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信