{"title":"A study on some versions of mi-spaces","authors":"Liang-Xue Peng","doi":"10.1016/j.topol.2025.109493","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce notions of <em>c</em>-<em>σ</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-spaces (<em>c</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-spaces) for <span><math><mi>i</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></math></span>. A space <em>X</em> is called a <em>c</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-space (<em>c</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-space, <em>c</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-space) if <em>X</em> has a closure-preserving local base (closure-preserving local quasi-base, cushioned local pair-base) at every compact subset <em>F</em> of <em>X</em>. We give some characterizations of <em>σ</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-spaces (<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-spaces), <em>s</em>-<em>σ</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-spaces (<em>s</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-spaces), and <em>c</em>-<em>σ</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-spaces (<em>c</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-spaces). Thus some known conclusions can be obtained by these characterizations. We also get the following results. Every stratifiable <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-space is a <em>c</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-space. Every ordinal is hereditarily a <em>c</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-space. If <em>X</em> is a generalized ordered (GO-) space and a sequence <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> of points in <em>X</em> has a limit point <em>x</em> in <em>X</em>, then the set <span><math><mi>C</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo><mo>∪</mo><mo>{</mo><mi>x</mi><mo>}</mo></math></span> has a closure-preserving local base in <em>X</em>. If <em>X</em> is a monotonically (countably) metacompact regular space, then <em>X</em> is a <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-space. If <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a regular space which has a <em>σ</em>-<em>NSR</em> pair-base at every point of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for each <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>, then the product space <span><math><mi>X</mi><mo>=</mo><munder><mo>∏</mo><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></munder><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a <em>σ</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-space. If <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a space which has a <em>σ</em>-<em>NSR</em> pair-base at a compact subset <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for each <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>, then the product space <span><math><mi>X</mi><mo>=</mo><munder><mo>∏</mo><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></munder><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> has a <em>σ</em>-<em>NSR</em> pair-base at the set <span><math><mi>C</mi><mo>=</mo><munder><mo>∏</mo><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></munder><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109493"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125002913","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce notions of c-σ--spaces (c--spaces) for . A space X is called a c--space (c--space, c--space) if X has a closure-preserving local base (closure-preserving local quasi-base, cushioned local pair-base) at every compact subset F of X. We give some characterizations of σ--spaces (-spaces), s-σ--spaces (s--spaces), and c-σ--spaces (c--spaces). Thus some known conclusions can be obtained by these characterizations. We also get the following results. Every stratifiable -space is a c--space. Every ordinal is hereditarily a c--space. If X is a generalized ordered (GO-) space and a sequence of points in X has a limit point x in X, then the set has a closure-preserving local base in X. If X is a monotonically (countably) metacompact regular space, then X is a -space. If is a regular space which has a σ-NSR pair-base at every point of for each , then the product space is a σ--space. If is a space which has a σ-NSR pair-base at a compact subset of for each , then the product space has a σ-NSR pair-base at the set .
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.