A study on some versions of mi-spaces

IF 0.6 4区 数学 Q3 MATHEMATICS
Liang-Xue Peng
{"title":"A study on some versions of mi-spaces","authors":"Liang-Xue Peng","doi":"10.1016/j.topol.2025.109493","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce notions of <em>c</em>-<em>σ</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-spaces (<em>c</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-spaces) for <span><math><mi>i</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></math></span>. A space <em>X</em> is called a <em>c</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-space (<em>c</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-space, <em>c</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-space) if <em>X</em> has a closure-preserving local base (closure-preserving local quasi-base, cushioned local pair-base) at every compact subset <em>F</em> of <em>X</em>. We give some characterizations of <em>σ</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-spaces (<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-spaces), <em>s</em>-<em>σ</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-spaces (<em>s</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-spaces), and <em>c</em>-<em>σ</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-spaces (<em>c</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>-spaces). Thus some known conclusions can be obtained by these characterizations. We also get the following results. Every stratifiable <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-space is a <em>c</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-space. Every ordinal is hereditarily a <em>c</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-space. If <em>X</em> is a generalized ordered (GO-) space and a sequence <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> of points in <em>X</em> has a limit point <em>x</em> in <em>X</em>, then the set <span><math><mi>C</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo><mo>∪</mo><mo>{</mo><mi>x</mi><mo>}</mo></math></span> has a closure-preserving local base in <em>X</em>. If <em>X</em> is a monotonically (countably) metacompact regular space, then <em>X</em> is a <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-space. If <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a regular space which has a <em>σ</em>-<em>NSR</em> pair-base at every point of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for each <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>, then the product space <span><math><mi>X</mi><mo>=</mo><munder><mo>∏</mo><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></munder><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a <em>σ</em>-<span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-space. If <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a space which has a <em>σ</em>-<em>NSR</em> pair-base at a compact subset <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for each <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>, then the product space <span><math><mi>X</mi><mo>=</mo><munder><mo>∏</mo><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></munder><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> has a <em>σ</em>-<em>NSR</em> pair-base at the set <span><math><mi>C</mi><mo>=</mo><munder><mo>∏</mo><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></munder><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109493"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125002913","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce notions of c-σ-mi-spaces (c-mi-spaces) for i{1,2,3}. A space X is called a c-m1-space (c-m2-space, c-m3-space) if X has a closure-preserving local base (closure-preserving local quasi-base, cushioned local pair-base) at every compact subset F of X. We give some characterizations of σ-mi-spaces (mi-spaces), s-σ-mi-spaces (s-mi-spaces), and c-σ-mi-spaces (c-mi-spaces). Thus some known conclusions can be obtained by these characterizations. We also get the following results. Every stratifiable T1-space is a c-m2-space. Every ordinal is hereditarily a c-m1-space. If X is a generalized ordered (GO-) space and a sequence {xn}nN of points in X has a limit point x in X, then the set C={xn:nN}{x} has a closure-preserving local base in X. If X is a monotonically (countably) metacompact regular space, then X is a m3-space. If Xn is a regular space which has a σ-NSR pair-base at every point of Xn for each nN, then the product space X=nNXn is a σ-m3-space. If Xn is a space which has a σ-NSR pair-base at a compact subset Cn of Xn for each nN, then the product space X=nNXn has a σ-NSR pair-base at the set C=nNCn.
若干版本的半空间研究
对于i∈{1,2,3},我们引入c-σ-mi-spaces (c-mi-spaces)的概念。如果X在X的每一个紧子集F上都有一个保持闭的局部基(保持闭的局部拟基,缓冲的局部对基),则空间X称为c-m1-空间(c-m2-空间,c-m3-空间)。我们给出了σ-mi-空间(mi-spaces)、s-σ-mi-空间(s-mi-spaces)和c-σ-mi-空间(c-mi-spaces)的一些刻画。因此,通过这些表征可以得出一些已知的结论。我们还得到以下结果。每个可分层的t1空间都是c-m2空间。每个序数都是一个c-m1空间。若X是广义有序(GO-)空间,且X中点的序列{xn}n∈n在X中有极限点X,则集合C={xn:n∈n}∪{X}在X中有闭保局部基。若X是单调(可数)元紧正则空间,则X是一个m3空间。若Xn是一个正则空间,对于n∈n,在Xn的每一点上都有一个σ-NSR对基,则积空间X=∏n∈NXn是一个σ-m3空间。如果Xn是一个空间,对于每个n∈n在Xn的紧子集Cn上有一个σ-NSR对基,则乘积空间X=∏n∈NXn在集合C=∏n∈NCn上有一个σ-NSR对基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信