{"title":"A Poincaré–Hopf formula for functionals associated to quasilinear elliptic systems","authors":"Natalino Borgia , Silvia Cingolani , Giuseppina Vannella","doi":"10.1016/j.nonrwa.2025.104443","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the functional <span><span><span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msup><mrow><mfenced><mrow><mi>α</mi><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msup><mrow><mfenced><mrow><mi>β</mi><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>−</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mi>z</mi><mo>=</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>∈</mo><mi>X</mi><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>Ω</mi></math></span> is a smooth bounded domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo><</mo><mi>N</mi></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>,</mo><mi>β</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. Here <span><math><mrow><mi>X</mi><mo>≔</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>×</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> denotes the product space, endowed with the norm <span><math><mrow><mo>‖</mo><mi>z</mi><mo>‖</mo><mo>=</mo><msub><mrow><mo>‖</mo><mi>u</mi><mo>‖</mo></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><mi>v</mi><mo>‖</mo></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub></mrow></math></span>, for any <span><math><mrow><mi>z</mi><mo>=</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>∈</mo><mi>X</mi></mrow></math></span>, being <span><math><msub><mrow><mo>‖</mo><mi>⋅</mi><mo>‖</mo></mrow><mrow><mn>1</mn><mo>,</mo><mi>s</mi></mrow></msub></math></span> the usual norm in <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>s</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>. In this paper we prove that <span><math><msubsup><mrow><mi>J</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> is of class <span><math><msub><mrow><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow><mrow><mo>+</mo></mrow></msub></math></span> and, from Cingolani and Degiovanni (2009), Theorem 1.1, we infer that each isolated critical point of <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> has critical groups of finite type and a Poincaré–Hopf formula holds.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104443"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001294","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the functional where is a smooth bounded domain of , , . Here denotes the product space, endowed with the norm , for any , being the usual norm in . In this paper we prove that is of class and, from Cingolani and Degiovanni (2009), Theorem 1.1, we infer that each isolated critical point of has critical groups of finite type and a Poincaré–Hopf formula holds.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.