A Poincaré–Hopf formula for functionals associated to quasilinear elliptic systems

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Natalino Borgia , Silvia Cingolani , Giuseppina Vannella
{"title":"A Poincaré–Hopf formula for functionals associated to quasilinear elliptic systems","authors":"Natalino Borgia ,&nbsp;Silvia Cingolani ,&nbsp;Giuseppina Vannella","doi":"10.1016/j.nonrwa.2025.104443","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the functional <span><span><span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msup><mrow><mfenced><mrow><mi>α</mi><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msup><mrow><mfenced><mrow><mi>β</mi><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>−</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mi>z</mi><mo>=</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>∈</mo><mi>X</mi><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>Ω</mi></math></span> is a smooth bounded domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>&lt;</mo><mi>N</mi></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>,</mo><mi>β</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. Here <span><math><mrow><mi>X</mi><mo>≔</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>×</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> denotes the product space, endowed with the norm <span><math><mrow><mo>‖</mo><mi>z</mi><mo>‖</mo><mo>=</mo><msub><mrow><mo>‖</mo><mi>u</mi><mo>‖</mo></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><mi>v</mi><mo>‖</mo></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub></mrow></math></span>, for any <span><math><mrow><mi>z</mi><mo>=</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>∈</mo><mi>X</mi></mrow></math></span>, being <span><math><msub><mrow><mo>‖</mo><mi>⋅</mi><mo>‖</mo></mrow><mrow><mn>1</mn><mo>,</mo><mi>s</mi></mrow></msub></math></span> the usual norm in <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>s</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>. In this paper we prove that <span><math><msubsup><mrow><mi>J</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> is of class <span><math><msub><mrow><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow><mrow><mo>+</mo></mrow></msub></math></span> and, from Cingolani and Degiovanni (2009), Theorem 1.1, we infer that each isolated critical point of <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> has critical groups of finite type and a Poincaré–Hopf formula holds.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104443"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001294","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the functional Jα,β(z)=1pΩα+|u(x)|2p2dx+1qΩβ+|v(x)|2q2dxΩF(u(x),v(x))dx,z=(u,v)X, where Ω is a smooth bounded domain of RN, 1<p,q<N, α,β0. Here XW01,p(Ω)×W01,q(Ω) denotes the product space, endowed with the norm z=u1,p+v1,q, for any z=(u,v)X, being 1,s the usual norm in W01,s(Ω). In this paper we prove that Jα,β is of class (S)+ and, from Cingolani and Degiovanni (2009), Theorem 1.1, we infer that each isolated critical point of Jα,β has critical groups of finite type and a Poincaré–Hopf formula holds.
拟线性椭圆系泛函的poincar_3 - hopf公式
我们考虑功能性Jα,β(z) = 1 p∫Ωα+ |∇u (x) | 2 p2dx + 1 q∫Ωβ+ |∇v (x) | 2 q2dx−∫ΩF (u (x), v (x)) dx, z = (u, v)∈x,Ω平稳RN的有限域,1 & lt; p, q< N,α,β≥0。其中X是W01,p(Ω)×W01,q(Ω)表示产品空间,赋给范数‖z‖=‖u‖1,p+‖v‖1,q,对于任意z=(u,v)∈X,为‖⋅‖1,是W01,s(Ω)中通常的范数。本文证明了Jα,β′是(S)+类,并由Cingolani and Degiovanni(2009)的定理1.1推导出了Jα,β的每一个孤立临界点都有有限型的临界群,且poincar - hopf公式成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信