{"title":"Nilpotent orbits and their secant varieties","authors":"Dmitri I. Panyushev","doi":"10.1016/j.jalgebra.2025.05.038","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a simple algebraic group, <span><math><mi>g</mi><mo>=</mo><mrow><mi>Lie</mi><mspace></mspace></mrow><mi>G</mi></math></span>, and <span><math><mi>O</mi></math></span> a nilpotent orbit in <span><math><mi>g</mi></math></span>. Let <span><math><mtext>CS</mtext><mo>(</mo><mi>O</mi><mo>)</mo></math></span> denote the affine cone over the secant variety of <span><math><mover><mrow><mi>P</mi><mi>O</mi></mrow><mo>‾</mo></mover><mo>⊂</mo><mi>P</mi><mi>g</mi></math></span>. Using the theory of doubled <em>G</em>-actions, we describe <span><math><mtext>CS</mtext><mo>(</mo><mi>O</mi><mo>)</mo></math></span> for all <span><math><mi>O</mi></math></span>. Let <span><math><mi>c</mi><mo>(</mo><mi>O</mi><mo>)</mo></math></span> and <span><math><mi>r</mi><mo>(</mo><mi>O</mi><mo>)</mo></math></span> denote the <em>complexity</em> and <em>rank</em> of the <em>G</em>-variety <span><math><mi>O</mi></math></span>. It is proved that <span><math><mi>dim</mi><mo></mo><mtext>CS</mtext><mo>(</mo><mi>O</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>dim</mi><mo></mo><mi>O</mi><mo>−</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>O</mi><mo>)</mo><mo>−</mo><mi>r</mi><mo>(</mo><mi>O</mi><mo>)</mo></math></span> and there is a subspace <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span> of a Cartan subalgebra of <span><math><mi>g</mi></math></span> such that <span><math><mtext>CS</mtext><mo>(</mo><mi>O</mi><mo>)</mo></math></span> is the closure of <span><math><mi>G</mi><mo>⋅</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span>. We compute <span><math><mi>c</mi><mo>(</mo><mi>O</mi><mo>)</mo></math></span> and <span><math><mi>r</mi><mo>(</mo><mi>O</mi><mo>)</mo></math></span> for all nilpotent orbits and show that <span><math><mtext>CS</mtext><mo>(</mo><mi>O</mi><mo>)</mo></math></span> is the closure of <span><math><mrow><mi>Im</mi></mrow><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>, where <span><math><mi>μ</mi><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>O</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>≃</mo><mi>g</mi></math></span> is the moment map. It is also shown that the secant variety of <span><math><mover><mrow><mi>P</mi><mi>O</mi></mrow><mo>‾</mo></mover></math></span> is defective if and only if <span><math><mi>r</mi><mo>(</mo><mi>O</mi><mo>)</mo><mo><</mo><mrow><mi>rk</mi></mrow><mspace></mspace><mi>G</mi></math></span> if and only if <span><math><mtext>CS</mtext><mo>(</mo><mi>O</mi><mo>)</mo><mo>≠</mo><mi>g</mi></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"682 ","pages":"Pages 689-722"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325003436","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a simple algebraic group, , and a nilpotent orbit in . Let denote the affine cone over the secant variety of . Using the theory of doubled G-actions, we describe for all . Let and denote the complexity and rank of the G-variety . It is proved that and there is a subspace of a Cartan subalgebra of such that is the closure of . We compute and for all nilpotent orbits and show that is the closure of , where is the moment map. It is also shown that the secant variety of is defective if and only if if and only if .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.