Nilpotent orbits and their secant varieties

IF 0.8 2区 数学 Q2 MATHEMATICS
Dmitri I. Panyushev
{"title":"Nilpotent orbits and their secant varieties","authors":"Dmitri I. Panyushev","doi":"10.1016/j.jalgebra.2025.05.038","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a simple algebraic group, <span><math><mi>g</mi><mo>=</mo><mrow><mi>Lie</mi><mspace></mspace></mrow><mi>G</mi></math></span>, and <span><math><mi>O</mi></math></span> a nilpotent orbit in <span><math><mi>g</mi></math></span>. Let <span><math><mtext>CS</mtext><mo>(</mo><mi>O</mi><mo>)</mo></math></span> denote the affine cone over the secant variety of <span><math><mover><mrow><mi>P</mi><mi>O</mi></mrow><mo>‾</mo></mover><mo>⊂</mo><mi>P</mi><mi>g</mi></math></span>. Using the theory of doubled <em>G</em>-actions, we describe <span><math><mtext>CS</mtext><mo>(</mo><mi>O</mi><mo>)</mo></math></span> for all <span><math><mi>O</mi></math></span>. Let <span><math><mi>c</mi><mo>(</mo><mi>O</mi><mo>)</mo></math></span> and <span><math><mi>r</mi><mo>(</mo><mi>O</mi><mo>)</mo></math></span> denote the <em>complexity</em> and <em>rank</em> of the <em>G</em>-variety <span><math><mi>O</mi></math></span>. It is proved that <span><math><mi>dim</mi><mo>⁡</mo><mtext>CS</mtext><mo>(</mo><mi>O</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>dim</mi><mo>⁡</mo><mi>O</mi><mo>−</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>O</mi><mo>)</mo><mo>−</mo><mi>r</mi><mo>(</mo><mi>O</mi><mo>)</mo></math></span> and there is a subspace <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span> of a Cartan subalgebra of <span><math><mi>g</mi></math></span> such that <span><math><mtext>CS</mtext><mo>(</mo><mi>O</mi><mo>)</mo></math></span> is the closure of <span><math><mi>G</mi><mo>⋅</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span>. We compute <span><math><mi>c</mi><mo>(</mo><mi>O</mi><mo>)</mo></math></span> and <span><math><mi>r</mi><mo>(</mo><mi>O</mi><mo>)</mo></math></span> for all nilpotent orbits and show that <span><math><mtext>CS</mtext><mo>(</mo><mi>O</mi><mo>)</mo></math></span> is the closure of <span><math><mrow><mi>Im</mi></mrow><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>, where <span><math><mi>μ</mi><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>O</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>≃</mo><mi>g</mi></math></span> is the moment map. It is also shown that the secant variety of <span><math><mover><mrow><mi>P</mi><mi>O</mi></mrow><mo>‾</mo></mover></math></span> is defective if and only if <span><math><mi>r</mi><mo>(</mo><mi>O</mi><mo>)</mo><mo>&lt;</mo><mrow><mi>rk</mi></mrow><mspace></mspace><mi>G</mi></math></span> if and only if <span><math><mtext>CS</mtext><mo>(</mo><mi>O</mi><mo>)</mo><mo>≠</mo><mi>g</mi></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"682 ","pages":"Pages 689-722"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325003436","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a simple algebraic group, g=LieG, and O a nilpotent orbit in g. Let CS(O) denote the affine cone over the secant variety of POPg. Using the theory of doubled G-actions, we describe CS(O) for all O. Let c(O) and r(O) denote the complexity and rank of the G-variety O. It is proved that dimCS(O)=2dimO2c(O)r(O) and there is a subspace tO of a Cartan subalgebra of g such that CS(O) is the closure of GtO. We compute c(O) and r(O) for all nilpotent orbits and show that CS(O) is the closure of Im(μ), where μ:T(O)gg is the moment map. It is also shown that the secant variety of PO is defective if and only if r(O)<rkG if and only if CS(O)g.
幂零轨道及其割线变体
设G是一个简单代数群,G =LieG, O是G中的一个幂零轨道。设CS(O)表示PO⊥上的仿射锥。利用重g作用理论,我们描述了所有O的CS(O),令c(O)和r(O)表示g变数O的复杂度和秩,证明了g的一个Cartan子代数的dim (O)=2dim (O) - 2c(O) - r(O),并且证明了g的一个Cartan子代数的子空间tO使得CS(O)是g·tO的闭包。我们计算了所有幂零轨道的c(O)和r(O),并证明CS(O)是Im(μ)的闭包,其中μ:T (O)→g是矩映射。还证明了PO的割线变体当且仅当r(O)<;rkG当且仅当CS(O)≠g时存在缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信