{"title":"Integration of data-driven T-spherical fuzzy mathematical models for evaluation of electric vehicles: Response to electric vehicle market demands","authors":"Anirban Tarafdar , Azharuddin Shaikh , Dipayan Bhowmik , Pinki Majumder , Dragan Pamucar , Vladimir Simic , Uttam Kumar Bera","doi":"10.1016/j.rser.2025.116008","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid growth of the electric vehicle (EV) market necessitates advanced multi-criteria decision-making (MCDM) frameworks capable of integrating diverse quantitative and qualitative factors under uncertainty. Traditional MCDM approaches often struggle to capture the complexity and imprecision inherent in EV evaluations, particularly in dynamic contexts like India. To address this gap, this study proposes the T-Spherical Fuzzy (T-SF) MARCOS and T-SF MOORA methods, which utilize T-Spherical Fuzzy Numbers (T-SFNs) to enhance decision precision. T-SFNs extend conventional fuzzy models by independently incorporating degrees of membership, non-membership, and hesitation, enabling a more granular and realistic modeling of expert judgments. In the methodological construction, numerical criteria (e.g., battery capacity, charging time) are directly incorporated, while qualitative criteria (e.g., safety, comfort) are initially evaluated by four domain experts through linguistic assessments, subsequently transformed into T-SFNs for integrated evaluation and accurate criteria weighting. The developed models are then employed to rank ten EV alternatives across 21 comprehensive technical and consumer-centric criteria. Comparative analysis shows that T-SF MARCOS and T-SF MOORA achieve superior ranking accuracy, with a high mutual Pearson correlation of 0.71, while traditional SF methods like SF-WSM and SF-WASPAS exhibit negative correlations of −0.43 and −0.42, respectively. Sensitivity analyses—covering variations in criteria weights and additional criteria integration—confirm the robustness and stability of the frameworks, with rank reversal rates remaining below 10 % across all scenarios. This study presents a technically resilient, uncertainty-aware evaluation framework, offering strategic insights for advancing consumer-centric EV development.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"223 ","pages":"Article 116008"},"PeriodicalIF":16.3000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125006811","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid growth of the electric vehicle (EV) market necessitates advanced multi-criteria decision-making (MCDM) frameworks capable of integrating diverse quantitative and qualitative factors under uncertainty. Traditional MCDM approaches often struggle to capture the complexity and imprecision inherent in EV evaluations, particularly in dynamic contexts like India. To address this gap, this study proposes the T-Spherical Fuzzy (T-SF) MARCOS and T-SF MOORA methods, which utilize T-Spherical Fuzzy Numbers (T-SFNs) to enhance decision precision. T-SFNs extend conventional fuzzy models by independently incorporating degrees of membership, non-membership, and hesitation, enabling a more granular and realistic modeling of expert judgments. In the methodological construction, numerical criteria (e.g., battery capacity, charging time) are directly incorporated, while qualitative criteria (e.g., safety, comfort) are initially evaluated by four domain experts through linguistic assessments, subsequently transformed into T-SFNs for integrated evaluation and accurate criteria weighting. The developed models are then employed to rank ten EV alternatives across 21 comprehensive technical and consumer-centric criteria. Comparative analysis shows that T-SF MARCOS and T-SF MOORA achieve superior ranking accuracy, with a high mutual Pearson correlation of 0.71, while traditional SF methods like SF-WSM and SF-WASPAS exhibit negative correlations of −0.43 and −0.42, respectively. Sensitivity analyses—covering variations in criteria weights and additional criteria integration—confirm the robustness and stability of the frameworks, with rank reversal rates remaining below 10 % across all scenarios. This study presents a technically resilient, uncertainty-aware evaluation framework, offering strategic insights for advancing consumer-centric EV development.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.