Engineered nanographene-based networks for versatile single-atom catalysts: CO2 electrolysis and hydrogen evolution

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hazem Abdelsalam , Zhilong Wang , Nahed H. Teleb , Mahmoud A.S. Sakr , Omar H. Abd-Elkader , Qinfang Zhang
{"title":"Engineered nanographene-based networks for versatile single-atom catalysts: CO2 electrolysis and hydrogen evolution","authors":"Hazem Abdelsalam ,&nbsp;Zhilong Wang ,&nbsp;Nahed H. Teleb ,&nbsp;Mahmoud A.S. Sakr ,&nbsp;Omar H. Abd-Elkader ,&nbsp;Qinfang Zhang","doi":"10.1016/j.mseb.2025.118576","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the potential of single-atom catalysts (SACs) supported by nanographene networks for efficient CO<sub>2</sub> reduction and hydrogen evolution reactions (HER). We examine the stability, electronic, and catalytic properties of SACs using 4d/ 5d transition metals. DFT calculations reveal exceptional stability (formation energy ∼ −7.5 eV) and optimized electronic properties, with the band gap reducing from 1.63 eV (pristine) to 0.88 eV upon metal anchoring. Strategic metal placement enhances catalytic performance: Mo at pore sites achieves superior CO<sub>2</sub> reduction, while Tc/La exhibits near-ideal HER activity (ΔG ∼ 0.11 eV). Ru-, Rh-, Pd-, Ag-, and Pt-SACs selectively produce CO (Ru limiting potential: −0.23 V), with Mo/W emerging as cost-effective alternatives for CO/CH<sub>3</sub>OH generation. These findings establish design frameworks for tunable SACs in sustainable energy applications.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"321 ","pages":"Article 118576"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725006002","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the potential of single-atom catalysts (SACs) supported by nanographene networks for efficient CO2 reduction and hydrogen evolution reactions (HER). We examine the stability, electronic, and catalytic properties of SACs using 4d/ 5d transition metals. DFT calculations reveal exceptional stability (formation energy ∼ −7.5 eV) and optimized electronic properties, with the band gap reducing from 1.63 eV (pristine) to 0.88 eV upon metal anchoring. Strategic metal placement enhances catalytic performance: Mo at pore sites achieves superior CO2 reduction, while Tc/La exhibits near-ideal HER activity (ΔG ∼ 0.11 eV). Ru-, Rh-, Pd-, Ag-, and Pt-SACs selectively produce CO (Ru limiting potential: −0.23 V), with Mo/W emerging as cost-effective alternatives for CO/CH3OH generation. These findings establish design frameworks for tunable SACs in sustainable energy applications.

Abstract Image

用于多用途单原子催化剂的工程纳米石墨烯网络:二氧化碳电解和析氢
本研究探讨了纳米石墨烯网络支持的单原子催化剂(SACs)在高效二氧化碳还原和析氢反应(HER)中的潜力。我们研究了使用4d/ 5d过渡金属的SACs的稳定性,电子和催化性能。DFT计算显示了优异的稳定性(地层能量~ - 7.5 eV)和优化的电子性能,金属锚定后带隙从1.63 eV(原始)减小到0.88 eV。战略性的金属放置增强了催化性能:在孔位上的Mo实现了卓越的CO2还原,而Tc/La表现出接近理想的HER活性(ΔG ~ 0.11 eV)。Ru-, Rh-, Pd-, Ag-和Pt-SACs选择性地产生CO (Ru极限电位:−0.23 V), Mo/W成为CO/CH3OH生成的成本效益替代品。这些发现为可持续能源应用中的可调谐sac建立了设计框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信