Kristy W K Lam,Yaojia Zhang,Wutong Du,Jie Sun,Feiyi Sun,Yuyang Chen,Charlie C H Ma,Jacky W Y Lam,Ryan T K Kwok,Jianwei Sun,Xuewen He,Ben Zhong Tang
{"title":"A Nitroreductase-Responsive Type I Photosensitizer with Aggregation-Induced Emission Characteristics for Precise Hypoxic Cancer Theranostics.","authors":"Kristy W K Lam,Yaojia Zhang,Wutong Du,Jie Sun,Feiyi Sun,Yuyang Chen,Charlie C H Ma,Jacky W Y Lam,Ryan T K Kwok,Jianwei Sun,Xuewen He,Ben Zhong Tang","doi":"10.1021/acsnano.4c16139","DOIUrl":null,"url":null,"abstract":"Cancer remains a significant global health challenge, with early and accurate detection being key to improving treatment outcomes. Developing targeted photosensitizers (PS) that selectively image and treat cancer cells is critical for cancer diagnosis, staging, and treatment monitoring. Understanding the hypoxic nature of solid tumors is essential in cancer detection, as hypoxia is associated with tumor aggressiveness and therapy resistance. Nitroreductase (NTR), which is overexpressed in hypoxic tumors, offers a target for selective imaging and treatment. In this study, we developed a type-I PS called TPAPyN, which is responsive to NTR. TPAPyN facilitates the imaging of hypoxic cancer cells and facilitates image-guided photodynamic therapy (PDT). Because of photoinduced electron transfer, TPAPyN does not emit fluorescence in the aqueous environment. However, its fluorescence is restored when NTR cleaves the nitrofuran quencher, forming highly emissive TPAPy aggregates. This characteristic makes TPAPyN a valuable fluorescent probe for specific imaging of NTR-overexpressed cancer cells. Additionally, TPAPy exhibits high efficiency in generating reactive oxygen species, indicating its potential as a PS for cancer treatment via PDT.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"48 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16139","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer remains a significant global health challenge, with early and accurate detection being key to improving treatment outcomes. Developing targeted photosensitizers (PS) that selectively image and treat cancer cells is critical for cancer diagnosis, staging, and treatment monitoring. Understanding the hypoxic nature of solid tumors is essential in cancer detection, as hypoxia is associated with tumor aggressiveness and therapy resistance. Nitroreductase (NTR), which is overexpressed in hypoxic tumors, offers a target for selective imaging and treatment. In this study, we developed a type-I PS called TPAPyN, which is responsive to NTR. TPAPyN facilitates the imaging of hypoxic cancer cells and facilitates image-guided photodynamic therapy (PDT). Because of photoinduced electron transfer, TPAPyN does not emit fluorescence in the aqueous environment. However, its fluorescence is restored when NTR cleaves the nitrofuran quencher, forming highly emissive TPAPy aggregates. This characteristic makes TPAPyN a valuable fluorescent probe for specific imaging of NTR-overexpressed cancer cells. Additionally, TPAPy exhibits high efficiency in generating reactive oxygen species, indicating its potential as a PS for cancer treatment via PDT.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.