{"title":"Unraveling the sweet connection between pancreatic cancer and hyperglycemia.","authors":"Zoë Post,Dauris Rosario Lora,Wojciech Blogowski","doi":"10.1016/j.tem.2025.06.003","DOIUrl":null,"url":null,"abstract":"Pancreatic adenocarcinoma (PaC) is one of the deadliest cancers, primarily due to late-stage diagnosis and limited treatment options. A bidirectional relationship exists between PaC and diabetes mellitus (DM), where glucose abnormalities both cause and result from PaC. In this review, we examine the complex pathophysiology of PaC-induced hyperglycemia, focusing on impaired insulin sensitivity, β cell dysfunction, chronic inflammation, and alterations in the gut microbiome and circadian rhythm. We discuss how PaC induces insulin resistance through disrupted signaling and proinflammatory factors, as well as β cell dysfunction through oxidative stress and adrenomedullin-mediated insulin secretion inhibition. In addition, emerging research highlights the role of the gut microbiome in PaC and hyperglycemia. Comprehensive understanding of these mechanisms is critical for early detection and improved treatment strategies for PaC.","PeriodicalId":23301,"journal":{"name":"Trends in Endocrinology & Metabolism","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Endocrinology & Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.tem.2025.06.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic adenocarcinoma (PaC) is one of the deadliest cancers, primarily due to late-stage diagnosis and limited treatment options. A bidirectional relationship exists between PaC and diabetes mellitus (DM), where glucose abnormalities both cause and result from PaC. In this review, we examine the complex pathophysiology of PaC-induced hyperglycemia, focusing on impaired insulin sensitivity, β cell dysfunction, chronic inflammation, and alterations in the gut microbiome and circadian rhythm. We discuss how PaC induces insulin resistance through disrupted signaling and proinflammatory factors, as well as β cell dysfunction through oxidative stress and adrenomedullin-mediated insulin secretion inhibition. In addition, emerging research highlights the role of the gut microbiome in PaC and hyperglycemia. Comprehensive understanding of these mechanisms is critical for early detection and improved treatment strategies for PaC.