Sung Eun Wang, Yubao Cheng, Jaechul Lim, Mi-Ae Jang, Emily N. Forrest, Yuna Kim, Meaghan Donahue, Sungsin Jo, Sheng-Nan Qiao, Dong Eun Lee, Jun Young Hong, Yan Xiong, Jian Jin, Siyuan Wang, Yong-hui Jiang
{"title":"Mechanism of EHMT2-mediated genomic imprinting associated with Prader-Willi syndrome","authors":"Sung Eun Wang, Yubao Cheng, Jaechul Lim, Mi-Ae Jang, Emily N. Forrest, Yuna Kim, Meaghan Donahue, Sungsin Jo, Sheng-Nan Qiao, Dong Eun Lee, Jun Young Hong, Yan Xiong, Jian Jin, Siyuan Wang, Yong-hui Jiang","doi":"10.1038/s41467-025-61156-8","DOIUrl":null,"url":null,"abstract":"<p>Prader-Willi Syndrome (PWS) is caused by the loss of expression of paternally expressed genes in the human 15q11.2-q13 imprinting domain. A set of imprinted genes that are active on the paternal but silenced on the maternal chromosome are intricately regulated by a bipartite imprinting center (PWS-IC) located in the PWS imprinting domain. We previously discovered that euchromatic histone lysine N-methyltransferase-2 (EHMT2/G9a) inhibitors are capable of un-silencing PWS-associated genes by restoring their expression from the maternal chromosome. Here, in mice lacking the <i>Ehmt2</i> gene, we document un-silencing of the imprinted <i>Snrpn/Snhg14</i> gene on the maternal chromosome in the late embryonic and postnatal brain. Using PWS and Angelman syndrome patient derived cells with either paternal or maternal deletion of 15q11.2-q13, we have found that chromatin of maternal PWS-IC is closed and has compact 3D folding confirmation. We further show that a distinct noncoding RNA (TSS4-280118) preferentially transcribed from the upstream of the PWS-IC of maternal chromosome interacts with EHMT2 and forms a heterochromatin complex in CIS on the maternal chromosome. Inactivation of TSS4-280118 by CRISPR/Cas9 editing results in unsilencing of the expression of <i>SNRPN</i> and <i>SNORD116</i> from the maternal chromosome. Taken together, these findings demonstrate that allele-specific recruitment of EHMT2 is required to maintain the maternal imprints. Our findings provide mechanistic insights and support a model for imprinting maintenance of the PWS imprinted domain.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"638 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61156-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Prader-Willi Syndrome (PWS) is caused by the loss of expression of paternally expressed genes in the human 15q11.2-q13 imprinting domain. A set of imprinted genes that are active on the paternal but silenced on the maternal chromosome are intricately regulated by a bipartite imprinting center (PWS-IC) located in the PWS imprinting domain. We previously discovered that euchromatic histone lysine N-methyltransferase-2 (EHMT2/G9a) inhibitors are capable of un-silencing PWS-associated genes by restoring their expression from the maternal chromosome. Here, in mice lacking the Ehmt2 gene, we document un-silencing of the imprinted Snrpn/Snhg14 gene on the maternal chromosome in the late embryonic and postnatal brain. Using PWS and Angelman syndrome patient derived cells with either paternal or maternal deletion of 15q11.2-q13, we have found that chromatin of maternal PWS-IC is closed and has compact 3D folding confirmation. We further show that a distinct noncoding RNA (TSS4-280118) preferentially transcribed from the upstream of the PWS-IC of maternal chromosome interacts with EHMT2 and forms a heterochromatin complex in CIS on the maternal chromosome. Inactivation of TSS4-280118 by CRISPR/Cas9 editing results in unsilencing of the expression of SNRPN and SNORD116 from the maternal chromosome. Taken together, these findings demonstrate that allele-specific recruitment of EHMT2 is required to maintain the maternal imprints. Our findings provide mechanistic insights and support a model for imprinting maintenance of the PWS imprinted domain.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.