Dynamic Ultrafast Laser-Induced Structural Changes and Extreme Nanostructuring in Hard Dielectric Materials

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rajeev Dwivedi, Huu Dat Nguyen, Sergio Sao Joao, Anne-Magali Seydoux-Guillaume, Thirunaukkarasu Kuppan, Ciro D’Amico, Guillaume Kermouche, Razvan Stoian
{"title":"Dynamic Ultrafast Laser-Induced Structural Changes and Extreme Nanostructuring in Hard Dielectric Materials","authors":"Rajeev Dwivedi, Huu Dat Nguyen, Sergio Sao Joao, Anne-Magali Seydoux-Guillaume, Thirunaukkarasu Kuppan, Ciro D’Amico, Guillaume Kermouche, Razvan Stoian","doi":"10.1021/acsphotonics.5c00554","DOIUrl":null,"url":null,"abstract":"Understanding matter transformation under light enables ultrafast 3D laser structuring to attain precise control down to the nanoscale. This is challenging for hard crystals given their mechanical resistance; nonetheless, it is key in structurally designing matter, pendling between crystalline and amorphous phases. The particular time evolution of structural and morphological changes can pinpoint either dynamics related to shock compaction or to thermal relaxation with phase transition. We report quantified the time-resolved dynamics of laser modifications induced by nondiffractive ultrafast laser beams in bulk sapphire using qualitative and quantitative phase-contrast microscopy to link optical changes to thermodynamic and structural evolutions. The final morphological changes of irradiated structures are revealed by high-resolution electron microscopy. Observations confirm that Bessel pulse irradiation transforms the pristine crystalline structure into a homogeneous amorphous phase in tens of ns, via the passage through a liquid phase nucleated at the early stages of the process. This ns-lived liquid phase is subject to cavitation at higher energy concentrations on the cooling phase (100 ns), facilitating nanoscale void fabrication with high aspect ratios. The outcomes strongly support bulk modification without shock assistance, governed instead by thermal relaxation. This determines a robust path for extreme laser structuring down to the nanoscale.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"150 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.5c00554","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding matter transformation under light enables ultrafast 3D laser structuring to attain precise control down to the nanoscale. This is challenging for hard crystals given their mechanical resistance; nonetheless, it is key in structurally designing matter, pendling between crystalline and amorphous phases. The particular time evolution of structural and morphological changes can pinpoint either dynamics related to shock compaction or to thermal relaxation with phase transition. We report quantified the time-resolved dynamics of laser modifications induced by nondiffractive ultrafast laser beams in bulk sapphire using qualitative and quantitative phase-contrast microscopy to link optical changes to thermodynamic and structural evolutions. The final morphological changes of irradiated structures are revealed by high-resolution electron microscopy. Observations confirm that Bessel pulse irradiation transforms the pristine crystalline structure into a homogeneous amorphous phase in tens of ns, via the passage through a liquid phase nucleated at the early stages of the process. This ns-lived liquid phase is subject to cavitation at higher energy concentrations on the cooling phase (100 ns), facilitating nanoscale void fabrication with high aspect ratios. The outcomes strongly support bulk modification without shock assistance, governed instead by thermal relaxation. This determines a robust path for extreme laser structuring down to the nanoscale.
硬介电材料的动态超快激光诱导结构变化和极端纳米结构
了解物质在光下的转变使超快3D激光结构能够达到精确控制到纳米级。考虑到硬晶体的机械阻力,这对它们来说是一个挑战;然而,它是设计物质结构的关键,在晶体和非晶态之间摇摆。结构和形态变化的特定时间演化可以查明与激波压实或相变热松弛有关的动力学。我们报告了非衍射超快激光束在块状蓝宝石中引起的激光修饰的时间分辨动力学,使用定性和定量相对比显微镜将光学变化与热力学和结构演变联系起来。高分辨率电子显微镜显示辐照后结构的最终形态变化。观察证实,贝塞尔脉冲辐照在几十ns内通过在过程早期成核的液相,将原始晶体结构转变为均匀的非晶相。这种ns寿命的液相在冷却阶段(100 ns)的能量浓度较高时会发生空化,从而促进了高纵横比的纳米级空洞的制造。结果强烈支持没有冲击辅助的体改性,而是由热松弛控制。这就决定了一条通向纳米级极端激光结构的坚实道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信