Site-resolved assessment of targeted protein degradation

IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ricardo Moreno-Ballesteros , Thomas Pembridge , Gaurav Beniwal , Satpal Virdee
{"title":"Site-resolved assessment of targeted protein degradation","authors":"Ricardo Moreno-Ballesteros ,&nbsp;Thomas Pembridge ,&nbsp;Gaurav Beniwal ,&nbsp;Satpal Virdee","doi":"10.1016/j.chembiol.2025.06.002","DOIUrl":null,"url":null,"abstract":"<div><div>Induced proximity using small molecules, exemplified by targeted protein degradation (TPD), represents a highly promising therapeutic strategy with significant untapped potential. However, evaluating an induced proximity event that accurately reflects drug binding typically requires the challenging and costly development of specific ligands, which limits the advancement of medicines based on this modality. To overcome this bottleneck, we combine genetic code expansion with ultra-fast bioorthogonal chemistry to sensitize specific protein sites at single-residue resolution to a generic bioorthogonal proximity inducer (BPI) molecule. Mammalian cells expressing sensitized mutants of the ubiquitin E3 ligases VHL and CRBN exhibit neosubstrate degradation in the presence of a BPI equipped with a ligand targeting bromodomain and extraterminal (BET) proteins. Furthermore, we demonstrate E3-independent degradation through recruitment of an upstream E2 conjugating enzyme. We anticipate that this approach will have broad applicability, enabling comprehensive assessment of the scope of induced proximity.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 7","pages":"Pages 969-981.e7"},"PeriodicalIF":6.6000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451945625001977","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Induced proximity using small molecules, exemplified by targeted protein degradation (TPD), represents a highly promising therapeutic strategy with significant untapped potential. However, evaluating an induced proximity event that accurately reflects drug binding typically requires the challenging and costly development of specific ligands, which limits the advancement of medicines based on this modality. To overcome this bottleneck, we combine genetic code expansion with ultra-fast bioorthogonal chemistry to sensitize specific protein sites at single-residue resolution to a generic bioorthogonal proximity inducer (BPI) molecule. Mammalian cells expressing sensitized mutants of the ubiquitin E3 ligases VHL and CRBN exhibit neosubstrate degradation in the presence of a BPI equipped with a ligand targeting bromodomain and extraterminal (BET) proteins. Furthermore, we demonstrate E3-independent degradation through recruitment of an upstream E2 conjugating enzyme. We anticipate that this approach will have broad applicability, enabling comprehensive assessment of the scope of induced proximity.

Abstract Image

Abstract Image

靶向蛋白降解的位点分辨评估
以靶向蛋白降解(TPD)为例,利用小分子诱导接近是一种非常有前途的治疗策略,具有巨大的未开发潜力。然而,评估准确反映药物结合的诱导接近事件通常需要具有挑战性和昂贵的特定配体开发,这限制了基于这种模式的药物的进步。为了克服这一瓶颈,我们将遗传密码扩展与超快速生物正交化学相结合,以单残基分辨率使特定蛋白质位点对通用生物正交邻近诱导剂(BPI)分子敏感。表达泛素E3连接酶VHL和CRBN的致敏突变体的哺乳动物细胞在配备靶向溴域和外端(BET)蛋白配体的BPI存在下表现出新底物降解。此外,我们通过募集上游E2偶联酶证明了E2非依赖性降解。我们预期这种方法将具有广泛的适用性,能够全面评估诱发接近的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Chemical Biology
Cell Chemical Biology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍: Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信