A carbon-encapsulated ZnSe/NiSe2 nanotube for efficient electrochemical Na+ storage

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yishan Jin , Yuan Peng , Zhongnan Cao , Dongbo Yu , Fei Hu , Jingcheng Zhang , Yong Zhang , Cuiping Yu , Jiewu Cui , Yucheng Wu
{"title":"A carbon-encapsulated ZnSe/NiSe2 nanotube for efficient electrochemical Na+ storage","authors":"Yishan Jin ,&nbsp;Yuan Peng ,&nbsp;Zhongnan Cao ,&nbsp;Dongbo Yu ,&nbsp;Fei Hu ,&nbsp;Jingcheng Zhang ,&nbsp;Yong Zhang ,&nbsp;Cuiping Yu ,&nbsp;Jiewu Cui ,&nbsp;Yucheng Wu","doi":"10.1016/j.apsusc.2025.163967","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal selenides are promising anode materials for sodium-ion batteries, but it remains a challenge to deal with the big volume strain during the electrochemical reaction. Here in this study, plum pudding-like ZnSe/NiSe<sub>2</sub>@carbon composite nanotubes are synthesized by a metal–organic framework-templated strategy, in which a great deal of dual-metallic selenide nanoparticles are evenly encapsulated within nitrogen-doped porous carbon nanotube matrix. The electrochemical results show that such metal–organic framework-derived ZnSe/NiSe<sub>2</sub>@carbon composite nanotubes with ultrasmall selenide nanoparticles could be a promising anode material for electrochemical Na<sup>+</sup> storage, and they exhibit good cycling stability (380mAh g<sup>−1</sup> after 1500 cycles at 2 A g<sup>−1</sup>) and high-rate capability (400mAh g<sup>−1</sup> at 10 A g<sup>−1</sup>). The superior electrochemical performance of such composite nanotubes is attributed to the hollow nanotube structure and plum pudding-like structure, which facilitates the Na<sup>+</sup> ion diffusion and improves the structural integrity. In addition, in situ X-ray diffraction indicates a lattice distortion behavior of the bimetallic ZnSe/NiSe<sub>2</sub> system, in which the lattice constant of ZnSe becomes larger while the lattice constant of NiSe<sub>2</sub> gets smaller in the sodiation process, leading to the mitigation of volume strain. This work offers a viable alternative to design robust electrode materials for advanced energy storage.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"710 ","pages":"Article 163967"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225016824","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal selenides are promising anode materials for sodium-ion batteries, but it remains a challenge to deal with the big volume strain during the electrochemical reaction. Here in this study, plum pudding-like ZnSe/NiSe2@carbon composite nanotubes are synthesized by a metal–organic framework-templated strategy, in which a great deal of dual-metallic selenide nanoparticles are evenly encapsulated within nitrogen-doped porous carbon nanotube matrix. The electrochemical results show that such metal–organic framework-derived ZnSe/NiSe2@carbon composite nanotubes with ultrasmall selenide nanoparticles could be a promising anode material for electrochemical Na+ storage, and they exhibit good cycling stability (380mAh g−1 after 1500 cycles at 2 A g−1) and high-rate capability (400mAh g−1 at 10 A g−1). The superior electrochemical performance of such composite nanotubes is attributed to the hollow nanotube structure and plum pudding-like structure, which facilitates the Na+ ion diffusion and improves the structural integrity. In addition, in situ X-ray diffraction indicates a lattice distortion behavior of the bimetallic ZnSe/NiSe2 system, in which the lattice constant of ZnSe becomes larger while the lattice constant of NiSe2 gets smaller in the sodiation process, leading to the mitigation of volume strain. This work offers a viable alternative to design robust electrode materials for advanced energy storage.

Abstract Image

Abstract Image

碳包封ZnSe/NiSe2纳米管用于高效电化学Na+存储
过渡金属硒化物是一种很有前途的钠离子电池负极材料,但在电化学反应过程中处理大体积应变仍然是一个挑战。本研究采用金属-有机框架-模板策略,将大量双金属硒化纳米粒子均匀包裹在氮掺杂多孔碳纳米管基体中,合成了李子布丁状的ZnSe/NiSe2@carbon复合纳米管。电化学结果表明,这种金属-有机骨架衍生的ZnSe/NiSe2@carbon复合纳米管具有超小硒化物纳米颗粒,具有良好的循环稳定性(在2 ag−1下循环1500次后可达到380mAh g−1)和高倍率(在10 ag−1下可达到400mAh g−1),有望成为电化学Na+存储的阳极材料。这种复合纳米管具有优异的电化学性能,主要归功于其中空的纳米管结构和葡萄干布丁状的结构,有利于Na+离子的扩散,提高了结构的完整性。此外,原位x射线衍射表明,双金属ZnSe/NiSe2体系存在晶格畸变行为,在钠化过程中,ZnSe的晶格常数变大,NiSe2的晶格常数变小,导致体积应变的减缓。这项工作为设计用于先进储能的坚固电极材料提供了可行的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信