Wen Chen, Haobo Wang, Xiang Ye, Xingkai Hao, Fujie Yan, Jian Wu, Danyang Li, Yan Wang, Lizhou Xu
{"title":"Gardenia-derived extracellular vesicles exert therapeutic effects on dopaminergic neuron apoptosis-mediated Parkinson’s disease","authors":"Wen Chen, Haobo Wang, Xiang Ye, Xingkai Hao, Fujie Yan, Jian Wu, Danyang Li, Yan Wang, Lizhou Xu","doi":"10.1038/s41531-025-01044-6","DOIUrl":null,"url":null,"abstract":"<p>Plant-derived extracellular vesicles (EVs) show health benefits. <i>Gardenia jasminoides</i> Ellis, known for its neuroprotective properties, lacks therapeutic investigation on gardenia-derived extracellular vesicles (GDEVs). This study investigated the value of GDEVs in Parkinson’s disease (PD) using rotenone (Rot)-induced Parkinsonism models in dopaminergic PC12 neuron cells and <i>Caenorhabditis elegans</i>. PD features apoptosis in dopaminergic neurons, while GDEVs alleviate PD by mitigating mitochondrial-mediated apoptosis. Specifically, GDEVs improve Rot-induced mitochondrial dysfunction to reduce cytochrome C release and apoptosis. Consequently, GDEVs reduce the risk of PD by lowering α-synuclein levels and regulating dopamine release. RNA sequencing and subsequent studies showed that GDEVs reduce p38 MAPK and p53 phosphorylation levels, and increase the Bcl-2/Bax ratio to prevent apoptosis in PC12 cells. In <i>Caenorhabditis elegans</i>, we verified that GDEVs reduce PD progression by increasing dopaminergic neurons using BZ555 mutants, and enhance dopamine release and motility. This study highlights the therapeutic potential of GDEVs in preventing neurodegenerative diseases.</p><figure></figure>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"19 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-01044-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plant-derived extracellular vesicles (EVs) show health benefits. Gardenia jasminoides Ellis, known for its neuroprotective properties, lacks therapeutic investigation on gardenia-derived extracellular vesicles (GDEVs). This study investigated the value of GDEVs in Parkinson’s disease (PD) using rotenone (Rot)-induced Parkinsonism models in dopaminergic PC12 neuron cells and Caenorhabditis elegans. PD features apoptosis in dopaminergic neurons, while GDEVs alleviate PD by mitigating mitochondrial-mediated apoptosis. Specifically, GDEVs improve Rot-induced mitochondrial dysfunction to reduce cytochrome C release and apoptosis. Consequently, GDEVs reduce the risk of PD by lowering α-synuclein levels and regulating dopamine release. RNA sequencing and subsequent studies showed that GDEVs reduce p38 MAPK and p53 phosphorylation levels, and increase the Bcl-2/Bax ratio to prevent apoptosis in PC12 cells. In Caenorhabditis elegans, we verified that GDEVs reduce PD progression by increasing dopaminergic neurons using BZ555 mutants, and enhance dopamine release and motility. This study highlights the therapeutic potential of GDEVs in preventing neurodegenerative diseases.
期刊介绍:
npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.