Insights into ancestral diversity in Parkinson’s disease risk: a comparative assessment of polygenic risk scores

IF 6.7 1区 医学 Q1 NEUROSCIENCES
Paula Saffie-Awad, Spencer M. Grant, Mary B. Makarious, Inas Elsayed, Arinola O. Sanyaolu, Peter Wild Crea, Artur F. Schumacher Schuh, Kristin S. Levine, Dan Vitale, Mathew J. Koretsky, Jeffrey Kim, Thiago Peixoto Leal, María Teresa Periñán, Sumit Dey, Alastair J. Noyce, Armando Reyes-Palomares, Noela Rodriguez-Losada, Jia Nee Foo, Wael Mohamed, Karl Heilbron, Lucy Norcliffe-Kaufmann, Mie Rizig, Njideka Okubadejo, Mike A. Nalls, Cornelis Blauwendraat, Andrew Singleton, Hampton Leonard, Ignacio F. Mata, Sara Bandres-Ciga
{"title":"Insights into ancestral diversity in Parkinson’s disease risk: a comparative assessment of polygenic risk scores","authors":"Paula Saffie-Awad, Spencer M. Grant, Mary B. Makarious, Inas Elsayed, Arinola O. Sanyaolu, Peter Wild Crea, Artur F. Schumacher Schuh, Kristin S. Levine, Dan Vitale, Mathew J. Koretsky, Jeffrey Kim, Thiago Peixoto Leal, María Teresa Periñán, Sumit Dey, Alastair J. Noyce, Armando Reyes-Palomares, Noela Rodriguez-Losada, Jia Nee Foo, Wael Mohamed, Karl Heilbron, Lucy Norcliffe-Kaufmann, Mie Rizig, Njideka Okubadejo, Mike A. Nalls, Cornelis Blauwendraat, Andrew Singleton, Hampton Leonard, Ignacio F. Mata, Sara Bandres-Ciga","doi":"10.1038/s41531-025-00967-4","DOIUrl":null,"url":null,"abstract":"<p>Risk prediction models play a crucial role in advancing healthcare by enabling early detection and supporting personalized medicine. Nonetheless, polygenic risk scores (PRS) for Parkinson’s disease (PD) have not been extensively studied across diverse populations, contributing to health disparities. In this study, we constructed 105 PRS using individual-level data from seven ancestries and compared two different models. <i>Model 1</i> was based on the cumulative effect of 90 known European PD risk variants, weighted by summary statistics from four independent ancestries (European, East Asian, Latino/Admixed American, and African/Admixed). <i>Model 2</i> leveraged multi-ancestry summary statistics using a <i>p</i>-value thresholding approach to improve prediction across diverse populations. Our findings provide a comprehensive assessment of PRS performance across ancestries and highlight the limitations of a “one-size-fits-all” approach to genetic risk prediction. We observed variability in predictive performance between models, underscoring the need for larger sample sizes and ancestry-specific approaches to enhance accuracy. These results establish a foundation for future research aimed at improving generalizability in genetic risk prediction for PD.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"70 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-00967-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Risk prediction models play a crucial role in advancing healthcare by enabling early detection and supporting personalized medicine. Nonetheless, polygenic risk scores (PRS) for Parkinson’s disease (PD) have not been extensively studied across diverse populations, contributing to health disparities. In this study, we constructed 105 PRS using individual-level data from seven ancestries and compared two different models. Model 1 was based on the cumulative effect of 90 known European PD risk variants, weighted by summary statistics from four independent ancestries (European, East Asian, Latino/Admixed American, and African/Admixed). Model 2 leveraged multi-ancestry summary statistics using a p-value thresholding approach to improve prediction across diverse populations. Our findings provide a comprehensive assessment of PRS performance across ancestries and highlight the limitations of a “one-size-fits-all” approach to genetic risk prediction. We observed variability in predictive performance between models, underscoring the need for larger sample sizes and ancestry-specific approaches to enhance accuracy. These results establish a foundation for future research aimed at improving generalizability in genetic risk prediction for PD.

Abstract Image

帕金森氏病风险的祖先多样性洞察:多基因风险评分的比较评估
风险预测模型通过实现早期检测和支持个性化医疗,在推进医疗保健方面发挥着至关重要的作用。然而,帕金森病(PD)的多基因风险评分(PRS)尚未在不同人群中进行广泛研究,这导致了健康差异。在本研究中,我们使用来自7个祖先的个体水平数据构建了105个PRS,并比较了两种不同的模型。模型1基于90个已知的欧洲PD风险变异的累积效应,并通过四个独立祖先(欧洲人、东亚人、拉丁美洲人/混血儿美国人和非洲人/混血儿)的汇总统计进行加权。模型2使用p值阈值方法利用多祖先汇总统计来改进跨不同种群的预测。我们的研究结果提供了跨祖先的PRS性能的综合评估,并强调了“一刀切”遗传风险预测方法的局限性。我们观察到模型之间预测性能的可变性,强调需要更大的样本量和特定祖先的方法来提高准确性。这些结果为进一步提高帕金森病遗传风险预测的通用性奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Parkinson's Disease
NPJ Parkinson's Disease Medicine-Neurology (clinical)
CiteScore
9.80
自引率
5.70%
发文量
156
审稿时长
11 weeks
期刊介绍: npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信