{"title":"Emergence of anthropogenic precipitation changes in a future warmer climate","authors":"Shoji Kusunoki, Ryo Mizuta, Masahiro Hosaka","doi":"10.1038/s41612-025-01128-3","DOIUrl":null,"url":null,"abstract":"<p>The ‘emergence year’ <i>Ye</i> is defined as the start of a future period during which precipitation consistently exceeds the maximum value of the past historical period. Emergence years of future anthropogenic changes in annual average precipitation (<i>Pav</i>) and annual maximum 1-day precipitation (<i>P1d</i>) were projected using high-resolution global atmospheric models with 20-km and 60-km grid-size for the period 1950-2099. A total of 10,000 randomized time series representing the time evolution of decadal natural variability enabled us to directly evaluate estimated frequency distributions (EDFs) on a grid point basis. <i>Ye</i> for both <i>Pav</i> and <i>P1d</i> generally occur earlier at high latitudes than they are elsewhere, and <i>Ye</i>(<i>P1d</i>) is generally later than <i>Ye</i>(<i>Pav</i>). <i>Ye</i>(<i>P1d</i>) covers a larger area than <i>Ye</i>(<i>Pav</i>) does and <i>Ye</i>(<i>P1d</i>) may occur earlier in the tropics and mid-latitudes than <i>Ye</i>(<i>Pav</i>). <i>Ye</i> occurs earlier in scenarios with higher anthropogenic emissions than in scenarios with lower emissions.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"148 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01128-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The ‘emergence year’ Ye is defined as the start of a future period during which precipitation consistently exceeds the maximum value of the past historical period. Emergence years of future anthropogenic changes in annual average precipitation (Pav) and annual maximum 1-day precipitation (P1d) were projected using high-resolution global atmospheric models with 20-km and 60-km grid-size for the period 1950-2099. A total of 10,000 randomized time series representing the time evolution of decadal natural variability enabled us to directly evaluate estimated frequency distributions (EDFs) on a grid point basis. Ye for both Pav and P1d generally occur earlier at high latitudes than they are elsewhere, and Ye(P1d) is generally later than Ye(Pav). Ye(P1d) covers a larger area than Ye(Pav) does and Ye(P1d) may occur earlier in the tropics and mid-latitudes than Ye(Pav). Ye occurs earlier in scenarios with higher anthropogenic emissions than in scenarios with lower emissions.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.