Accelerated data-driven materials science with the Materials Project

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Matthew K. Horton, Patrick Huck, Ruo Xi Yang, Jason M. Munro, Shyam Dwaraknath, Alex M. Ganose, Ryan S. Kingsbury, Mingjian Wen, Jimmy X. Shen, Tyler S. Mathis, Aaron D. Kaplan, Karlo Berket, Janosh Riebesell, Janine George, Andrew S. Rosen, Evan W. C. Spotte-Smith, Matthew J. McDermott, Orion A. Cohen, Alex Dunn, Matthew C. Kuner, Gian-Marco Rignanese, Guido Petretto, David Waroquiers, Sinead M. Griffin, Jeffrey B. Neaton, Daryl C. Chrzan, Mark Asta, Geoffroy Hautier, Shreyas Cholia, Gerbrand Ceder, Shyue Ping Ong, Anubhav Jain, Kristin A. Persson
{"title":"Accelerated data-driven materials science with the Materials Project","authors":"Matthew K. Horton, Patrick Huck, Ruo Xi Yang, Jason M. Munro, Shyam Dwaraknath, Alex M. Ganose, Ryan S. Kingsbury, Mingjian Wen, Jimmy X. Shen, Tyler S. Mathis, Aaron D. Kaplan, Karlo Berket, Janosh Riebesell, Janine George, Andrew S. Rosen, Evan W. C. Spotte-Smith, Matthew J. McDermott, Orion A. Cohen, Alex Dunn, Matthew C. Kuner, Gian-Marco Rignanese, Guido Petretto, David Waroquiers, Sinead M. Griffin, Jeffrey B. Neaton, Daryl C. Chrzan, Mark Asta, Geoffroy Hautier, Shreyas Cholia, Gerbrand Ceder, Shyue Ping Ong, Anubhav Jain, Kristin A. Persson","doi":"10.1038/s41563-025-02272-0","DOIUrl":null,"url":null,"abstract":"<p>The Materials Project was launched formally in 2011 to drive materials discovery forwards through high-throughput computation and open data. More than a decade later, the Materials Project has become an indispensable tool used by more than 600,000 materials researchers around the world. This Perspective describes how the Materials Project, as a data platform and a software ecosystem, has helped to shape research in data-driven materials science. We cover how sustainable software and computational methods have accelerated materials design while becoming more open source and collaborative in nature. Next, we present cases where the Materials Project was used to understand and discover functional materials. We then describe our efforts to meet the needs of an expanding user base, through technical infrastructure updates ranging from data architecture and cloud resources to interactive web applications. Finally, we discuss opportunities to better aid the research community, with the vision that more accessible and easy-to-understand materials data will result in democratized materials knowledge and an increasingly collaborative community.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"50 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02272-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Materials Project was launched formally in 2011 to drive materials discovery forwards through high-throughput computation and open data. More than a decade later, the Materials Project has become an indispensable tool used by more than 600,000 materials researchers around the world. This Perspective describes how the Materials Project, as a data platform and a software ecosystem, has helped to shape research in data-driven materials science. We cover how sustainable software and computational methods have accelerated materials design while becoming more open source and collaborative in nature. Next, we present cases where the Materials Project was used to understand and discover functional materials. We then describe our efforts to meet the needs of an expanding user base, through technical infrastructure updates ranging from data architecture and cloud resources to interactive web applications. Finally, we discuss opportunities to better aid the research community, with the vision that more accessible and easy-to-understand materials data will result in democratized materials knowledge and an increasingly collaborative community.

Abstract Image

加速数据驱动材料科学与材料项目
材料项目于2011年正式启动,旨在通过高通量计算和开放数据推动材料发现。十多年后,“材料计划”已成为全球60多万材料研究人员不可或缺的工具。本展望描述了材料项目作为一个数据平台和软件生态系统如何帮助塑造数据驱动的材料科学研究。我们将介绍可持续软件和计算方法如何加速材料设计,同时在本质上变得更加开源和协作。接下来,我们将介绍材料项目用于理解和发现功能材料的案例。然后,我们描述了通过从数据架构和云资源到交互式web应用程序的技术基础设施更新来满足不断扩大的用户群需求的努力。最后,我们讨论了更好地帮助研究社区的机会,以更易于访问和易于理解的材料数据为愿景,将导致材料知识的民主化和日益协作的社区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信