Matthew K. Horton, Patrick Huck, Ruo Xi Yang, Jason M. Munro, Shyam Dwaraknath, Alex M. Ganose, Ryan S. Kingsbury, Mingjian Wen, Jimmy X. Shen, Tyler S. Mathis, Aaron D. Kaplan, Karlo Berket, Janosh Riebesell, Janine George, Andrew S. Rosen, Evan W. C. Spotte-Smith, Matthew J. McDermott, Orion A. Cohen, Alex Dunn, Matthew C. Kuner, Gian-Marco Rignanese, Guido Petretto, David Waroquiers, Sinead M. Griffin, Jeffrey B. Neaton, Daryl C. Chrzan, Mark Asta, Geoffroy Hautier, Shreyas Cholia, Gerbrand Ceder, Shyue Ping Ong, Anubhav Jain, Kristin A. Persson
{"title":"Accelerated data-driven materials science with the Materials Project","authors":"Matthew K. Horton, Patrick Huck, Ruo Xi Yang, Jason M. Munro, Shyam Dwaraknath, Alex M. Ganose, Ryan S. Kingsbury, Mingjian Wen, Jimmy X. Shen, Tyler S. Mathis, Aaron D. Kaplan, Karlo Berket, Janosh Riebesell, Janine George, Andrew S. Rosen, Evan W. C. Spotte-Smith, Matthew J. McDermott, Orion A. Cohen, Alex Dunn, Matthew C. Kuner, Gian-Marco Rignanese, Guido Petretto, David Waroquiers, Sinead M. Griffin, Jeffrey B. Neaton, Daryl C. Chrzan, Mark Asta, Geoffroy Hautier, Shreyas Cholia, Gerbrand Ceder, Shyue Ping Ong, Anubhav Jain, Kristin A. Persson","doi":"10.1038/s41563-025-02272-0","DOIUrl":null,"url":null,"abstract":"<p>The Materials Project was launched formally in 2011 to drive materials discovery forwards through high-throughput computation and open data. More than a decade later, the Materials Project has become an indispensable tool used by more than 600,000 materials researchers around the world. This Perspective describes how the Materials Project, as a data platform and a software ecosystem, has helped to shape research in data-driven materials science. We cover how sustainable software and computational methods have accelerated materials design while becoming more open source and collaborative in nature. Next, we present cases where the Materials Project was used to understand and discover functional materials. We then describe our efforts to meet the needs of an expanding user base, through technical infrastructure updates ranging from data architecture and cloud resources to interactive web applications. Finally, we discuss opportunities to better aid the research community, with the vision that more accessible and easy-to-understand materials data will result in democratized materials knowledge and an increasingly collaborative community.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"50 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02272-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Materials Project was launched formally in 2011 to drive materials discovery forwards through high-throughput computation and open data. More than a decade later, the Materials Project has become an indispensable tool used by more than 600,000 materials researchers around the world. This Perspective describes how the Materials Project, as a data platform and a software ecosystem, has helped to shape research in data-driven materials science. We cover how sustainable software and computational methods have accelerated materials design while becoming more open source and collaborative in nature. Next, we present cases where the Materials Project was used to understand and discover functional materials. We then describe our efforts to meet the needs of an expanding user base, through technical infrastructure updates ranging from data architecture and cloud resources to interactive web applications. Finally, we discuss opportunities to better aid the research community, with the vision that more accessible and easy-to-understand materials data will result in democratized materials knowledge and an increasingly collaborative community.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.