{"title":"Enhanced Bifunctional Oxygen Electrocatalysis by Synergistic Active Heterostructure Design","authors":"Taotao Li, Bingchen Liu, Haotian Guo, Pengfei Wang, Zonglin Liu, Qinzhi Lai, Qianyu Zhang, Ting‐Feng Yi","doi":"10.1002/aenm.202502493","DOIUrl":null,"url":null,"abstract":"Due to the slower kinetics and different reaction requirements of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), it is challenging to balance between the two reaction properties. In this work, CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>/Co heterostructure are designed by in situ loading of carbon dots (CDs) ‐mediated metal sites onto porous carbon sphere substrates (CSs) to achieve highly durable bifunctional catalysts (FeCoCDs/CSs). Experimental and theoretical calculations demonstrate that the strong metalcarrier interaction interface promotes dynamic electron transfer between CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> and Co, improves electronic conductivity, and enhances the stability of FeCoCDs/CSs catalysts. CDs effectively regulate the electronic environment of the active sites of Co, optimize the adsorption behavior of O<jats:sup>*</jats:sup>/OH<jats:sup>*</jats:sup>, and promote the release of final products. The designed FeCoCDs/CSs exhibit excellent ORR/OER performance with an oxygen potential difference (ΔE) of 0.635 V. Liquid zinc‐air batteries (ZABs) with FeCoCDs/CSs show outstanding cycling stability (Δ<jats:italic>E</jats:italic>) of 0.635 V) and high round‐trip efficiency (64.7%). The flexible ZABs (FZABs) with FeCoCDs/CS also deliver excellent cycling stability over a wide temperature range (60–‐40 °C), demonstrating its ruggedness and suitability for practical applications under various environmental conditions.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"150 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202502493","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the slower kinetics and different reaction requirements of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), it is challenging to balance between the two reaction properties. In this work, CoFe2O4/Co heterostructure are designed by in situ loading of carbon dots (CDs) ‐mediated metal sites onto porous carbon sphere substrates (CSs) to achieve highly durable bifunctional catalysts (FeCoCDs/CSs). Experimental and theoretical calculations demonstrate that the strong metalcarrier interaction interface promotes dynamic electron transfer between CoFe2O4 and Co, improves electronic conductivity, and enhances the stability of FeCoCDs/CSs catalysts. CDs effectively regulate the electronic environment of the active sites of Co, optimize the adsorption behavior of O*/OH*, and promote the release of final products. The designed FeCoCDs/CSs exhibit excellent ORR/OER performance with an oxygen potential difference (ΔE) of 0.635 V. Liquid zinc‐air batteries (ZABs) with FeCoCDs/CSs show outstanding cycling stability (ΔE) of 0.635 V) and high round‐trip efficiency (64.7%). The flexible ZABs (FZABs) with FeCoCDs/CS also deliver excellent cycling stability over a wide temperature range (60–‐40 °C), demonstrating its ruggedness and suitability for practical applications under various environmental conditions.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.