Rebecca Chan, Xujun Cao, Sabrina L. Ergun, Evert Njomen, Stephen R. Lynch, Christopher Ritchie, Benjamin Cravatt, Lingyin Li
{"title":"Cysteine allostery and autoinhibition govern human STING oligomer functionality","authors":"Rebecca Chan, Xujun Cao, Sabrina L. Ergun, Evert Njomen, Stephen R. Lynch, Christopher Ritchie, Benjamin Cravatt, Lingyin Li","doi":"10.1038/s41589-025-01951-y","DOIUrl":null,"url":null,"abstract":"<p>The stimulator of interferon genes (STING) innate immune pathway can exacerbate inflammatory diseases when aberrantly activated, emphasizing an unmet need for STING antagonists. However, no inhibitors have advanced to the clinic because it remains unclear which mechanistic step(s) of human STING activation are crucial for inhibition of downstream signaling. Here we report that C91 palmitoylation is not universally necessary for human STING signaling. Instead, evolutionarily-conserved C64 is basally palmitoylated and is crucial for preventing unproductive STING oligomerization. The effects of palmitoylation at C64 and C91 converge on the control of intradimer disulfide bond formation at C148. Together, dynamic equilibria of these cysteine post-translational modifications allow proper STING ligand-binding domain self-assembly and scaffolding function. Given this complex landscape, we took inspiration from STING’s natural autoinhibitory mechanism and identified an eight-amino-acid peptide that binds a defined pocket at the oligomerization interface, setting the stage for future therapeutic development.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"6 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01951-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The stimulator of interferon genes (STING) innate immune pathway can exacerbate inflammatory diseases when aberrantly activated, emphasizing an unmet need for STING antagonists. However, no inhibitors have advanced to the clinic because it remains unclear which mechanistic step(s) of human STING activation are crucial for inhibition of downstream signaling. Here we report that C91 palmitoylation is not universally necessary for human STING signaling. Instead, evolutionarily-conserved C64 is basally palmitoylated and is crucial for preventing unproductive STING oligomerization. The effects of palmitoylation at C64 and C91 converge on the control of intradimer disulfide bond formation at C148. Together, dynamic equilibria of these cysteine post-translational modifications allow proper STING ligand-binding domain self-assembly and scaffolding function. Given this complex landscape, we took inspiration from STING’s natural autoinhibitory mechanism and identified an eight-amino-acid peptide that binds a defined pocket at the oligomerization interface, setting the stage for future therapeutic development.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.