Learning Simple Causal Structures1

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Dan Geiger, Azaria Paz, Judea Pearl
{"title":"Learning Simple Causal Structures1","authors":"Dan Geiger, Azaria Paz, Judea Pearl","doi":"10.1002/j.1098-111x.1993.tb00005.x","DOIUrl":null,"url":null,"abstract":"Humans use knowledge of causation to derive dependencies among events of interest. The converse task, that of inferring causal relationships from patterns of dependencies, is far less understood. This article established conditions under which the directionality of some dependencies is uniquely dictated by probabilistic information—an essential prerequisite for attributing a causal interpretation to these dependencies. An efficient algorithm is developed that, given data generated by an undisclosed simple causal schema, recovers the structure of that schema, as well as the directionality of all links that are uniquely orientable. A simple schema is represented by a directed acyclic graph (dag) where every pair of nodes with a common direct child have no common ancestor nor is one an ancestor of the other. Trees, singly connected dags, and directed bi‐partite graphs are examples of simple dags. Conditions ensuring the correctness of this recovery algorithm are provided.","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"21 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/j.1098-111x.1993.tb00005.x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Humans use knowledge of causation to derive dependencies among events of interest. The converse task, that of inferring causal relationships from patterns of dependencies, is far less understood. This article established conditions under which the directionality of some dependencies is uniquely dictated by probabilistic information—an essential prerequisite for attributing a causal interpretation to these dependencies. An efficient algorithm is developed that, given data generated by an undisclosed simple causal schema, recovers the structure of that schema, as well as the directionality of all links that are uniquely orientable. A simple schema is represented by a directed acyclic graph (dag) where every pair of nodes with a common direct child have no common ancestor nor is one an ancestor of the other. Trees, singly connected dags, and directed bi‐partite graphs are examples of simple dags. Conditions ensuring the correctness of this recovery algorithm are provided.
学习简单的因果结构
人类利用因果关系的知识推导出感兴趣的事件之间的依赖关系。相反的任务,即从依赖模式中推断因果关系的任务,人们对它的理解要少得多。本文建立了一些条件,在这些条件下,某些依赖关系的方向性唯一地由概率信息决定——这是将因果解释归因于这些依赖关系的基本先决条件。我们开发了一种有效的算法,在给定由未公开的简单因果模式生成的数据的情况下,恢复该模式的结构以及所有唯一可定向的链接的方向性。简单模式由有向无环图(dag)表示,其中具有共同直子节点的每对节点没有共同的祖先,也不是一个节点是另一个节点的祖先。树、单连通图和有向二部图都是简单图的例子。给出了保证该恢复算法正确性的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信