Electromagnetically Forced Flows in Shallow Electrolyte Layers

IF 25.4 1区 工程技术 Q1 MECHANICS
Sergio Cuevas, Sergey A. Suslov, Aldo Figueroa
{"title":"Electromagnetically Forced Flows in Shallow Electrolyte Layers","authors":"Sergio Cuevas, Sergey A. Suslov, Aldo Figueroa","doi":"10.1146/annurev-fluid-112723-051243","DOIUrl":null,"url":null,"abstract":"Electromagnetically forced flows in shallow electrolyte layers offer a versatile and nonintrusive method for exploring quasi-two-dimensional fluid dynamics. This review focuses on the experimental and theoretical aspects of such flows driven by Lorentz forces generated by the interaction of injected electric currents and the applied magnetic fields. The method is applicable to both liquid metals and electrolytes, with the latter more commonly used due to their wide availability and ease of handling. Experimental aspects of the method and key components of mathematical flow analysis are discussed. Initially developed for geophysical flow modeling, the method has been instrumental in exploring various other physical phenomena including vortex and wake dynamics, spatiotemporal chaos, and mixing processes. The review also addresses the challenges of achieving true two-dimensionality in laboratory settings and discusses the influence of various parameters, such as layer thickness and forcing intensity, on the flow behavior. Future research directions in the field are highlighted.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"27 1","pages":""},"PeriodicalIF":25.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-112723-051243","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Electromagnetically forced flows in shallow electrolyte layers offer a versatile and nonintrusive method for exploring quasi-two-dimensional fluid dynamics. This review focuses on the experimental and theoretical aspects of such flows driven by Lorentz forces generated by the interaction of injected electric currents and the applied magnetic fields. The method is applicable to both liquid metals and electrolytes, with the latter more commonly used due to their wide availability and ease of handling. Experimental aspects of the method and key components of mathematical flow analysis are discussed. Initially developed for geophysical flow modeling, the method has been instrumental in exploring various other physical phenomena including vortex and wake dynamics, spatiotemporal chaos, and mixing processes. The review also addresses the challenges of achieving true two-dimensionality in laboratory settings and discusses the influence of various parameters, such as layer thickness and forcing intensity, on the flow behavior. Future research directions in the field are highlighted.
浅电解液层中的电磁强迫流动
浅层电解液中的电磁强迫流动为探索准二维流体动力学提供了一种通用的非侵入性方法。本文综述了由注入电流和外加磁场相互作用产生的洛伦兹力驱动的这种流动的实验和理论方面。该方法适用于液态金属和电解质,后者由于其广泛可用和易于处理而更常用。讨论了数学流分析方法的实验方面和关键组成部分。该方法最初是为地球物理流动建模而开发的,在探索其他各种物理现象,包括涡旋和尾流动力学、时空混沌和混合过程中发挥了重要作用。该综述还解决了在实验室环境中实现真正二维的挑战,并讨论了各种参数(如层厚度和强迫强度)对流动行为的影响。展望了该领域未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
54.00
自引率
0.40%
发文量
43
期刊介绍: The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions. Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license. This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信