Peter James Nee, Aldo Gamboa, Harald P Pfeiffer, Lorenzo Pompili, Antoni Ramos-Buades, Vijay Varma, Michael Boyle, Alessandra Buonanno, Raffi Enficiaud, Lawrence E Kidder and Mark A Scheel
{"title":"Impact of eccentricity and mean anomaly in numerical relativity mergers","authors":"Peter James Nee, Aldo Gamboa, Harald P Pfeiffer, Lorenzo Pompili, Antoni Ramos-Buades, Vijay Varma, Michael Boyle, Alessandra Buonanno, Raffi Enficiaud, Lawrence E Kidder and Mark A Scheel","doi":"10.1088/1361-6382/ade35d","DOIUrl":null,"url":null,"abstract":"Accurate modelling of black hole (BH) binaries is critical to achieve the science goals of gravitational-wave detectors. Modelling such configurations relies strongly on calibration to numerical-relativity (NR) simulations. Binaries on quasi-circular orbits have been widely explored in NR, however, coverage of the broader nine-dimensional parameter space, including orbital eccentricity, remains sparse. This article develops a new procedure to control orbital eccentricity of binary BH (BBH) simulations that enables choosing initial data parameters with precise control over eccentricity and mean anomaly of the subsequent evolution, as well as the coalescence time. We then calculate several sequences of NR simulations that nearly uniformly cover the two-dimensional eccentricity–mean anomaly space for equal mass, non-spinning BBHs. We demonstrate that, for fixed eccentricity, many quantities related to the merger dynamics of BBHs show an oscillatory dependence on mean anomaly. The amplitude of these oscillations scales nearly linearly with the eccentricity of the system. We find that for the eccentricities explored in this work, the magnitude of deviations in various quantities such as the merger amplitude and peak luminosity can approach ∼5% of their quasi-circular value. We use our findings to explain eccentric phenomena reported in other studies. We also show that methods for estimating the remnant mass employed in the effective-one-body approach exhibit similar deviations, roughly matching the amplitude of the oscillations we find in NR simulations. This work is an important step towards a complete description of eccentric BBH mergers, and demonstrates the importance of considering the entire two-dimensional parameter subspace related to eccentricity.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"5 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ade35d","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate modelling of black hole (BH) binaries is critical to achieve the science goals of gravitational-wave detectors. Modelling such configurations relies strongly on calibration to numerical-relativity (NR) simulations. Binaries on quasi-circular orbits have been widely explored in NR, however, coverage of the broader nine-dimensional parameter space, including orbital eccentricity, remains sparse. This article develops a new procedure to control orbital eccentricity of binary BH (BBH) simulations that enables choosing initial data parameters with precise control over eccentricity and mean anomaly of the subsequent evolution, as well as the coalescence time. We then calculate several sequences of NR simulations that nearly uniformly cover the two-dimensional eccentricity–mean anomaly space for equal mass, non-spinning BBHs. We demonstrate that, for fixed eccentricity, many quantities related to the merger dynamics of BBHs show an oscillatory dependence on mean anomaly. The amplitude of these oscillations scales nearly linearly with the eccentricity of the system. We find that for the eccentricities explored in this work, the magnitude of deviations in various quantities such as the merger amplitude and peak luminosity can approach ∼5% of their quasi-circular value. We use our findings to explain eccentric phenomena reported in other studies. We also show that methods for estimating the remnant mass employed in the effective-one-body approach exhibit similar deviations, roughly matching the amplitude of the oscillations we find in NR simulations. This work is an important step towards a complete description of eccentric BBH mergers, and demonstrates the importance of considering the entire two-dimensional parameter subspace related to eccentricity.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.