{"title":"Years since menopause and its metabolomic signature with biological aging in women at midlife: a population-based study.","authors":"Bo Xie, Meiling Li, Qi Wang, Chunying Fu, Xiaoyi Wang, Dongshan Zhu","doi":"10.1038/s41514-025-00249-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study analyzed UK Biobank data from 46,463 postmenopausal women to investigate metabolic changes linked to years since menopause (YSM) and their impact on aging biomarkers. Elastic net regression identified 115 YSM-associated metabolites, forming a metabolic signature strongly correlated with YSM (r = 0.30, P < 0.001). Each standard deviation increase in this metabolic signature was associated with decreased odds of long telomere length (0.94, 0.92-0.96), increased odds of high allostatic load (1.53, 1.50-1.56) and high PhenoAge (2.30, 2.17-2.44). Mediation analysis indicated that the metabolic signature explained 43.5% of the association between YSM and allostatic load, 9.09% between YSM and telomere length, and 89.3% between YSM and PhenoAge. These findings reveal how menopause-related metabolic shifts drive biological aging, highlighting potential intervention targets for postmenopausal health.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"11 1","pages":"58"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216968/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-025-00249-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study analyzed UK Biobank data from 46,463 postmenopausal women to investigate metabolic changes linked to years since menopause (YSM) and their impact on aging biomarkers. Elastic net regression identified 115 YSM-associated metabolites, forming a metabolic signature strongly correlated with YSM (r = 0.30, P < 0.001). Each standard deviation increase in this metabolic signature was associated with decreased odds of long telomere length (0.94, 0.92-0.96), increased odds of high allostatic load (1.53, 1.50-1.56) and high PhenoAge (2.30, 2.17-2.44). Mediation analysis indicated that the metabolic signature explained 43.5% of the association between YSM and allostatic load, 9.09% between YSM and telomere length, and 89.3% between YSM and PhenoAge. These findings reveal how menopause-related metabolic shifts drive biological aging, highlighting potential intervention targets for postmenopausal health.