Mohammad Ali Farzin, Seyed Morteza Naghib, Navid Rabiee
{"title":"Smart biosensors with self-healing materials.","authors":"Mohammad Ali Farzin, Seyed Morteza Naghib, Navid Rabiee","doi":"10.1039/d5tb01139f","DOIUrl":null,"url":null,"abstract":"<p><p>Real-time, <i>in situ</i>, and continuous biosensors face considerable challenges related to durability, as prolonged operation often leads to mechanical or functional degradation. In this context, materials with self-healing properties offer a transformative advantage. By enabling automatic recovery from physical damage, these materials significantly extend sensor lifespan, reduce maintenance costs, and minimize environmental waste. The emergence of self-healing systems has already driven major advancements in fields such as electronic skins (E-skins), smart textiles, and soft robotics, with even greater potential in the realms of implantable and underwater biosensors. Furthermore, self-healing materials are poised to accelerate the development of resilient wireless sensor networks, facilitating their integration into the Internet of Things (IoT) and human-machine interfaces. In response to these promising opportunities, significant research efforts have been directed toward embedding self-repairing capabilities into biosensor platforms. This review presents the latest innovations in self-healing biosensors, covering a range of designs including E-skins, eutectogel-based devices, textile-integrated sensors, implantable systems, electrochemical and fire sensors, as well as underwater applications. To provide a comprehensive understanding, the discussion begins with fundamental design strategies for engineering self-healing materials and progresses to their implementation in biosensing technologies. The review concludes by outlining future research directions and emerging applications that underscore the pivotal role of self-healing materials in shaping the next generation of robust, intelligent biosensors.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb01139f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time, in situ, and continuous biosensors face considerable challenges related to durability, as prolonged operation often leads to mechanical or functional degradation. In this context, materials with self-healing properties offer a transformative advantage. By enabling automatic recovery from physical damage, these materials significantly extend sensor lifespan, reduce maintenance costs, and minimize environmental waste. The emergence of self-healing systems has already driven major advancements in fields such as electronic skins (E-skins), smart textiles, and soft robotics, with even greater potential in the realms of implantable and underwater biosensors. Furthermore, self-healing materials are poised to accelerate the development of resilient wireless sensor networks, facilitating their integration into the Internet of Things (IoT) and human-machine interfaces. In response to these promising opportunities, significant research efforts have been directed toward embedding self-repairing capabilities into biosensor platforms. This review presents the latest innovations in self-healing biosensors, covering a range of designs including E-skins, eutectogel-based devices, textile-integrated sensors, implantable systems, electrochemical and fire sensors, as well as underwater applications. To provide a comprehensive understanding, the discussion begins with fundamental design strategies for engineering self-healing materials and progresses to their implementation in biosensing technologies. The review concludes by outlining future research directions and emerging applications that underscore the pivotal role of self-healing materials in shaping the next generation of robust, intelligent biosensors.