{"title":"Development and multicenter validation of on-site breast cancer diagnosis using paper spray ionization miniature mass spectrometry.","authors":"Hou-Chun Huang, Hsin-Hsiang Chung, Jia-Ying Yu, Bo-Rong Chen, Ming-Yang Wang, Cheng-Chih Hsu","doi":"10.1038/s43856-025-00930-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Conventional histopathological examination for breast core needle biopsy diagnosis is time-consuming and labor-intensive, leading to delayed medical treatments and increased psychological burden for patients. A rapid and reliable diagnostic method is needed to assist routine pathological diagnosis.</p><p><strong>Methods: </strong>We developed a miniature mass spectrometry platform coupled with paper spray ionization (MiniMaP) for rapid breast cancer diagnosis. This platform enables direct molecular analysis of biopsy samples without sample preparation. A machine learning model was trained to differentiate benign and malignant samples based on molecular profiles. The platform's performance was further evaluated in a 22-month multicenter validation study.</p><p><strong>Results: </strong>Here we show that the machine learning model trained on molecular profiles achieves 88% accuracy in distinguishing breast cancer from benign samples. The model identifies 60 molecular features as potential biomarkers. Additionally, MiniMaP is implemented for on-site analysis in a hospital setting, enabling breast cancer diagnosis within 5 min. The platform maintains consistent accuracy (84%) across 540 biopsy samples over the 22-month validation period.</p><p><strong>Conclusions: </strong>Our results demonstrate that the MiniMaP platform enables rapid breast cancer diagnosis and maintains consistent performance in long-term multicenter validation. It holds promise for assisting clinical breast cancer diagnosis by providing instant diagnostic reports to support timely medical decisions and improve medical care.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"259"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216043/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-00930-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Conventional histopathological examination for breast core needle biopsy diagnosis is time-consuming and labor-intensive, leading to delayed medical treatments and increased psychological burden for patients. A rapid and reliable diagnostic method is needed to assist routine pathological diagnosis.
Methods: We developed a miniature mass spectrometry platform coupled with paper spray ionization (MiniMaP) for rapid breast cancer diagnosis. This platform enables direct molecular analysis of biopsy samples without sample preparation. A machine learning model was trained to differentiate benign and malignant samples based on molecular profiles. The platform's performance was further evaluated in a 22-month multicenter validation study.
Results: Here we show that the machine learning model trained on molecular profiles achieves 88% accuracy in distinguishing breast cancer from benign samples. The model identifies 60 molecular features as potential biomarkers. Additionally, MiniMaP is implemented for on-site analysis in a hospital setting, enabling breast cancer diagnosis within 5 min. The platform maintains consistent accuracy (84%) across 540 biopsy samples over the 22-month validation period.
Conclusions: Our results demonstrate that the MiniMaP platform enables rapid breast cancer diagnosis and maintains consistent performance in long-term multicenter validation. It holds promise for assisting clinical breast cancer diagnosis by providing instant diagnostic reports to support timely medical decisions and improve medical care.