{"title":"Nearly T2T, phased genome assemblies of corals reveal haplotype diversity and the evolutionary process of gene expansion.","authors":"Takeshi Takeuchi, Yoshihiko Suzuki, Eiichi Shoguchi, Manabu Fujie, Mayumi Kawamitsu, Chuya Shinzato, Noriyuki Satoh, Eugene W Myers","doi":"10.1093/dnares/dsaf017","DOIUrl":null,"url":null,"abstract":"<p><p>Gene family expansion illustrates a critical aspect of evolutionary adaptation. However, the mechanisms by which gene family expansions emerge and are maintained in the genome remain unclear. Here, we report de novo, nearly telomere-to-telomere (T2T), haplotype-phased genome assemblies of two coral species, Acropora tenuis and A. digitifera. By comparing haplotypes within a single individual and across species, we identified genomic regions spanning several megabases with highly disordered gene arrangements, termed non-syntenic regions (nSRs). In these nSRs, there are clusters of genes that emerged by lineage-specific gene family expansion. The gene repertoire within nSRs exhibits significant sequence diversity and distinct expression patterns, suggesting functional diversification. We propose that lineage-specific gene family expansion in nSRs occurs through recurrent tandem duplications mediated by non-allelic homologous recombination (NAHR) events, with nSRs serving as reservoirs for a diverse gene repertoire advantageous for survival. The nearly T2T-phased genomes provide new insights into the remarkable flexibility of genome organization and the evolution of gene family expansions.</p>","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsaf017","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Gene family expansion illustrates a critical aspect of evolutionary adaptation. However, the mechanisms by which gene family expansions emerge and are maintained in the genome remain unclear. Here, we report de novo, nearly telomere-to-telomere (T2T), haplotype-phased genome assemblies of two coral species, Acropora tenuis and A. digitifera. By comparing haplotypes within a single individual and across species, we identified genomic regions spanning several megabases with highly disordered gene arrangements, termed non-syntenic regions (nSRs). In these nSRs, there are clusters of genes that emerged by lineage-specific gene family expansion. The gene repertoire within nSRs exhibits significant sequence diversity and distinct expression patterns, suggesting functional diversification. We propose that lineage-specific gene family expansion in nSRs occurs through recurrent tandem duplications mediated by non-allelic homologous recombination (NAHR) events, with nSRs serving as reservoirs for a diverse gene repertoire advantageous for survival. The nearly T2T-phased genomes provide new insights into the remarkable flexibility of genome organization and the evolution of gene family expansions.
期刊介绍:
DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.