{"title":"Lysine Acetyltransferase 6 Complexes in Neurodevelopmental Disorders and Different Types of Cancer.","authors":"Negar Mousavi, Xiang-Jiao Yang","doi":"10.1007/978-3-031-91459-1_14","DOIUrl":null,"url":null,"abstract":"<p><p>Lysine acetylation is a critical post-translational modification that regulates gene expression and cellular functions. The MYST family lysine acetyltransferases KAT6A (also known as MOZ and MYST3) and KAT6B (a.k.a. MORF and MYST4), in complex with the multivalent epigenetic regulator BRPF1, play key roles in hematopoietic and neural development. Dysregulation of these complexes is implicated in neurodevelopmental disorders, such as Genitopatellar and Say-Barber-Biesecker-Young-Simpson syndromes, as well as in various cancers, including leukemia and medulloblastoma. The evolutionary conservation of these complexes in Drosophila melanogaster and Caenorhabditis elegans underscores their fundamental biological significance. Understanding the structural and functional mechanisms of KAT6-BRPF1 complexes provides insight into their pathological roles and therapeutic potential.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":"75 ","pages":"391-410"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results and Problems in Cell Differentiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-91459-1_14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Lysine acetylation is a critical post-translational modification that regulates gene expression and cellular functions. The MYST family lysine acetyltransferases KAT6A (also known as MOZ and MYST3) and KAT6B (a.k.a. MORF and MYST4), in complex with the multivalent epigenetic regulator BRPF1, play key roles in hematopoietic and neural development. Dysregulation of these complexes is implicated in neurodevelopmental disorders, such as Genitopatellar and Say-Barber-Biesecker-Young-Simpson syndromes, as well as in various cancers, including leukemia and medulloblastoma. The evolutionary conservation of these complexes in Drosophila melanogaster and Caenorhabditis elegans underscores their fundamental biological significance. Understanding the structural and functional mechanisms of KAT6-BRPF1 complexes provides insight into their pathological roles and therapeutic potential.
期刊介绍:
Results and Problems in Cell Differentiation is an up-to-date book series that presents and explores selected questions of cell and developmental biology. Each volume focuses on a single, well-defined topic. Reviews address basic questions and phenomena, but also provide concise information on the most recent advances. Together, the volumes provide a valuable overview of this exciting and dynamically expanding field.