{"title":"Molecular foundation underlying the formation of highly productive isobilateral leaves in mangroves.","authors":"Junjie Yin, Xiao Li, Xiaoxuan Gu, Saiqi Hao, Jingding Dai, Luzhen Chen, Qingshun Q Li","doi":"10.1093/treephys/tpaf074","DOIUrl":null,"url":null,"abstract":"<p><p>Photosynthesis in mangroves contributes to one of the most carbon-rich ecosystems on Earth and plays a significant role in mitigating global climate change. However, the mechanisms underlying the high productivity of mangroves remain largely unexplored. Through anatomical analyses, we found that mangrove species with higher biomass production, such as Sonneratia apetala, exhibit isobilateral leaves, which enhance light harvesting and reduce light inhibition, resulting in higher photosynthetic yields. Transcriptomic and genomic analyses revealed the molecular processes underlying the formation of isobilateral leaves. We found that auxin is rapidly synthesized and works in coordination with gibberellin and brassinosteroid in the isobilateral leaves of S. apetala. Interestingly, we identified a group of genes related to adaxial-abaxial leaf polarity in S. apetala, with upregulated genes associated with chlorophyll synthesis, adaxial cell identity and erect leaf growth, while genes related to the recognition of adaxial cell boundaries-possibly related to the lower palisade tissues-were downregulated. Additionally, we identified amino acid substitutions and changes in promoter cis-acting elements in Indole-3-acetic acid carboxylmethyltransferase 1 (IAMT1) in Sonneratia species. These findings provide new insights into the formation of isobilateral leaves in mangroves and their adaptation to intertidal high-light coastal conditions.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf074","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Photosynthesis in mangroves contributes to one of the most carbon-rich ecosystems on Earth and plays a significant role in mitigating global climate change. However, the mechanisms underlying the high productivity of mangroves remain largely unexplored. Through anatomical analyses, we found that mangrove species with higher biomass production, such as Sonneratia apetala, exhibit isobilateral leaves, which enhance light harvesting and reduce light inhibition, resulting in higher photosynthetic yields. Transcriptomic and genomic analyses revealed the molecular processes underlying the formation of isobilateral leaves. We found that auxin is rapidly synthesized and works in coordination with gibberellin and brassinosteroid in the isobilateral leaves of S. apetala. Interestingly, we identified a group of genes related to adaxial-abaxial leaf polarity in S. apetala, with upregulated genes associated with chlorophyll synthesis, adaxial cell identity and erect leaf growth, while genes related to the recognition of adaxial cell boundaries-possibly related to the lower palisade tissues-were downregulated. Additionally, we identified amino acid substitutions and changes in promoter cis-acting elements in Indole-3-acetic acid carboxylmethyltransferase 1 (IAMT1) in Sonneratia species. These findings provide new insights into the formation of isobilateral leaves in mangroves and their adaptation to intertidal high-light coastal conditions.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.