Comprehensive characterization of human alveolar epithelial cells cultured for 28 days at the air-liquid interface.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ikuya Tanabe, Shinkichi Ishikawa
{"title":"Comprehensive characterization of human alveolar epithelial cells cultured for 28 days at the air-liquid interface.","authors":"Ikuya Tanabe, Shinkichi Ishikawa","doi":"10.1038/s41598-025-07219-8","DOIUrl":null,"url":null,"abstract":"<p><p>Lung epithelia are exposed to various substances in the atmosphere through breathing. To investigate the mechanisms and treatments for respiratory diseases caused by these substances, robust in vitro lung epithelial models are essential. This study aimed to develop an in vitro alveolar epithelial model using primary human pulmonary alveolar epithelial cells (HPAEpiCs). HPAEpiCs were cultured at an air-liquid interface (ALI) for 28 days in a medium supplemented with three small molecules: Y-27632, A-83-01, and CHIR99021. The characteristics of the ALI-cultured cells were then analyzed. Immunostaining revealed that many cells expressed alveolar type 2 (AT2) cell markers, such as surfactant protein B and prosurfactant protein C. Single-cell gene expression analysis further confirmed that the majority of the cells expressed genes reported to be highly expressed in AT2 cells. The apical surface of the ALI-cultured HPAEpiCs was covered with a liquid containing a variety of lipids and proteins known to be present in lung surfactant in vivo. Our data demonstrate that 28 days of ALI culture promoted the differentiation of HPAEpiCs into AT2 cells capable of secreting lung surfactant components. This ALI culture model containing differentiated AT2 cells could be valuable for investigating the mechanisms and treatments for respiratory diseases.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"22995"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219739/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-07219-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lung epithelia are exposed to various substances in the atmosphere through breathing. To investigate the mechanisms and treatments for respiratory diseases caused by these substances, robust in vitro lung epithelial models are essential. This study aimed to develop an in vitro alveolar epithelial model using primary human pulmonary alveolar epithelial cells (HPAEpiCs). HPAEpiCs were cultured at an air-liquid interface (ALI) for 28 days in a medium supplemented with three small molecules: Y-27632, A-83-01, and CHIR99021. The characteristics of the ALI-cultured cells were then analyzed. Immunostaining revealed that many cells expressed alveolar type 2 (AT2) cell markers, such as surfactant protein B and prosurfactant protein C. Single-cell gene expression analysis further confirmed that the majority of the cells expressed genes reported to be highly expressed in AT2 cells. The apical surface of the ALI-cultured HPAEpiCs was covered with a liquid containing a variety of lipids and proteins known to be present in lung surfactant in vivo. Our data demonstrate that 28 days of ALI culture promoted the differentiation of HPAEpiCs into AT2 cells capable of secreting lung surfactant components. This ALI culture model containing differentiated AT2 cells could be valuable for investigating the mechanisms and treatments for respiratory diseases.

Abstract Image

Abstract Image

Abstract Image

在气液界面培养28天的人肺泡上皮细胞的综合表征。
肺上皮细胞通过呼吸接触到大气中的各种物质。为了研究这些物质引起的呼吸系统疾病的机制和治疗方法,健全的体外肺上皮模型是必不可少的。本研究旨在利用原代人肺泡上皮细胞(HPAEpiCs)建立体外肺泡上皮细胞模型。HPAEpiCs在添加了Y-27632、a -83-01和CHIR99021三种小分子的培养基中,在气液界面(ALI)培养28天。然后分析ali培养细胞的特性。免疫染色显示许多细胞表达肺泡2型(AT2)细胞标记物,如表面活性剂蛋白B和前表面活性剂蛋白c。单细胞基因表达分析进一步证实,大多数细胞表达的基因在AT2细胞中高表达。ali培养的HPAEpiCs的顶端表面覆盖着一种含有多种已知存在于体内肺表面活性剂中的脂质和蛋白质的液体。我们的数据表明,ALI培养28天促进HPAEpiCs向能够分泌肺表面活性物质成分的AT2细胞分化。这种含有分化AT2细胞的ALI培养模型对于研究呼吸系统疾病的机制和治疗方法具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信