Miguel Fernandez de Ullivarri, Colin Buttimer, Janneke Wijman, Eelco Heintz, Paul Ross, Matthew P McCusker, Colin Hill
{"title":"Cold induced expression of a novel levansucrase gene sacB1 enhances exopolysaccharide production and stress resilience in Leuconostoc mesenteroides.","authors":"Miguel Fernandez de Ullivarri, Colin Buttimer, Janneke Wijman, Eelco Heintz, Paul Ross, Matthew P McCusker, Colin Hill","doi":"10.1038/s41598-025-04141-x","DOIUrl":null,"url":null,"abstract":"<p><p>Exopolysaccharides (EPS) play critical roles in microbial survival, stress adaptation, and biofilm formation across diverse environments. In food-associated bacteria such as Leuconostoc mesenteroides, understanding the regulation of EPS production under environmental stress is important for both spoilage control and industrial applications. However, the mechanisms linking cold stress to EPS biosynthesis remain poorly understood. Here, we show that sucrose and low temperature (8 °C) trigger a metabolic shift from dextran-only to combined dextran and levan biosynthesis in four meat-borne Leuc. mesenteroides strains. Two high EPS-producing strains (HEPRs) possess the sacB_1 gene, which encodes a previously uncharacterized levansucrase absent from low EPS-producing strains (LEPRs) that only carry the levS gene. This is the first study to describe the role of sacB_1 in cold-induced EPS production. Notably, sacB_1 was also identified in Leuc. mesenteroides strains isolated from plant-based fermentations such as kimchi and birch sap, but the HEPR strains analyzed here are the only known meat-derived isolates to carry this gene. Genomic analyses revealed highly conserved biosynthetic clusters for dextran, heteropolysaccharide, and levan. Gene expression profiling showed that levS and sacB_1 were upregulated at 8 °C, while dsrD expression was favoured at 25 °C. Cold-induced sucrose metabolism, characterized by high expression of levS, sacB_1, and dsrD, enhanced cell viability under oxidative stress. Furthermore, heterologous expression of sacB_1 in Leuc. mesenteroides and Lactococcus lactis improved resilience under cold and high-aeration conditions, confirming the protective role of levan. These findings advance the understanding of temperature-dependent EPS regulation in LAB and highlight sucrase diversity as a key factor in microbial adaptation to environmental stress.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"22980"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12215647/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-04141-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Exopolysaccharides (EPS) play critical roles in microbial survival, stress adaptation, and biofilm formation across diverse environments. In food-associated bacteria such as Leuconostoc mesenteroides, understanding the regulation of EPS production under environmental stress is important for both spoilage control and industrial applications. However, the mechanisms linking cold stress to EPS biosynthesis remain poorly understood. Here, we show that sucrose and low temperature (8 °C) trigger a metabolic shift from dextran-only to combined dextran and levan biosynthesis in four meat-borne Leuc. mesenteroides strains. Two high EPS-producing strains (HEPRs) possess the sacB_1 gene, which encodes a previously uncharacterized levansucrase absent from low EPS-producing strains (LEPRs) that only carry the levS gene. This is the first study to describe the role of sacB_1 in cold-induced EPS production. Notably, sacB_1 was also identified in Leuc. mesenteroides strains isolated from plant-based fermentations such as kimchi and birch sap, but the HEPR strains analyzed here are the only known meat-derived isolates to carry this gene. Genomic analyses revealed highly conserved biosynthetic clusters for dextran, heteropolysaccharide, and levan. Gene expression profiling showed that levS and sacB_1 were upregulated at 8 °C, while dsrD expression was favoured at 25 °C. Cold-induced sucrose metabolism, characterized by high expression of levS, sacB_1, and dsrD, enhanced cell viability under oxidative stress. Furthermore, heterologous expression of sacB_1 in Leuc. mesenteroides and Lactococcus lactis improved resilience under cold and high-aeration conditions, confirming the protective role of levan. These findings advance the understanding of temperature-dependent EPS regulation in LAB and highlight sucrase diversity as a key factor in microbial adaptation to environmental stress.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.