Development and validation of a new model for predicting malignant pancreatic cystic lesions based on clinical and EUS characteristics.

IF 1.6 4区 医学 Q3 GASTROENTEROLOGY & HEPATOLOGY
Yifan Xu, Yan Chen, Jianguo Cheng, Ting Yang, Yu Zhang, Jinfang Xu, Jie Chen
{"title":"Development and validation of a new model for predicting malignant pancreatic cystic lesions based on clinical and EUS characteristics.","authors":"Yifan Xu, Yan Chen, Jianguo Cheng, Ting Yang, Yu Zhang, Jinfang Xu, Jie Chen","doi":"10.1080/00365521.2025.2523433","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop and validate a predictive model integrating clinical and Endoscopic Ultrasound (EUS) morphological characteristics to improve the diagnosis of malignant pancreatic cystic lesions (PCLs) in radiologically challenging cases.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on patients with pathologically confirmed PCLs at The First Affiliated Hospital of Naval Medical University between January 2006 and June 2023. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA).</p><p><strong>Results: </strong>Among 126 enrolled patients, multivariate logistic regression identified six independent predictors of malignancy: weight loss (OR:29.118, 95% CI: 1.894-1031.096, <i>p</i> = 0.010), serum CA19-9 level > 29.3 U/ml (OR: 24.601, 95% CI:7.305-110.886, <i>p</i> < 0.001), location of head-neck (OR: 3.539, 95% CI:1.106-12.857, <i>p</i> = 0.033), thickened cystic wall (OR:3.605, 95% CI:1.106-12.857, <i>p</i> = 0.033), solid component (OR:7.124, 95% CI: 2.113-30.399, <i>p</i> = 0.001) and peripancreatic invasion (OR:8.749, 95% CI: 1.367-78.268, <i>p</i> = 0.021). The model demonstrated high discriminative ability, with an AUC of 0.938 in the training set and 0.951 in the validation set. DCA demonstrated a net benefit (NB) of 0.224 at 10-80% threshold probabilities, potentially avoiding 10% unnecessary surgeries.</p><p><strong>Conclusions: </strong>This EUS-based nomogram improves malignancy prediction in radiologically challenging PCLs, offering clinical utility for personalized management. External validation is warranted to confirm its generalizability.</p>","PeriodicalId":21461,"journal":{"name":"Scandinavian Journal of Gastroenterology","volume":" ","pages":"1-10"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00365521.2025.2523433","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aimed to develop and validate a predictive model integrating clinical and Endoscopic Ultrasound (EUS) morphological characteristics to improve the diagnosis of malignant pancreatic cystic lesions (PCLs) in radiologically challenging cases.

Methods: A retrospective analysis was conducted on patients with pathologically confirmed PCLs at The First Affiliated Hospital of Naval Medical University between January 2006 and June 2023. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA).

Results: Among 126 enrolled patients, multivariate logistic regression identified six independent predictors of malignancy: weight loss (OR:29.118, 95% CI: 1.894-1031.096, p = 0.010), serum CA19-9 level > 29.3 U/ml (OR: 24.601, 95% CI:7.305-110.886, p < 0.001), location of head-neck (OR: 3.539, 95% CI:1.106-12.857, p = 0.033), thickened cystic wall (OR:3.605, 95% CI:1.106-12.857, p = 0.033), solid component (OR:7.124, 95% CI: 2.113-30.399, p = 0.001) and peripancreatic invasion (OR:8.749, 95% CI: 1.367-78.268, p = 0.021). The model demonstrated high discriminative ability, with an AUC of 0.938 in the training set and 0.951 in the validation set. DCA demonstrated a net benefit (NB) of 0.224 at 10-80% threshold probabilities, potentially avoiding 10% unnecessary surgeries.

Conclusions: This EUS-based nomogram improves malignancy prediction in radiologically challenging PCLs, offering clinical utility for personalized management. External validation is warranted to confirm its generalizability.

基于临床和EUS特征预测胰腺恶性囊性病变的新模型的建立和验证。
目的:本研究旨在建立并验证一种结合临床和内镜超声(EUS)形态学特征的预测模型,以提高影像学上具有挑战性病例的恶性胰腺囊性病变(PCLs)的诊断。方法:回顾性分析2006年1月至2023年6月海军医科大学第一附属医院病理证实的pcl患者。采用受试者工作特征曲线下面积(AUC)和决策曲线分析(DCA)对模型性能进行评价。结果:在126例入组患者中,多因素logistic回归确定了6个恶性肿瘤的独立预测因素:体重减轻(OR:29.118, 95% CI: 1.894-1031.096, p = 0.010)、血清CA19-9水平bb0 29.3 U/ml (OR: 24.601, 95% CI:7.305-110.886, p = 0.033)、囊壁增厚(OR:3.605, 95% CI:1.106-12.857, p = 0.033)、实体成分(OR:7.124, 95% CI: 2.113-30.399, p = 0.001)和胰腺周围浸润(OR:8.749, 95% CI: 1.367-78.268, p = 0.021)。该模型具有较高的判别能力,训练集的AUC为0.938,验证集的AUC为0.951。在10-80%的阈值概率下,DCA的净收益(NB)为0.224,可能避免10%的不必要手术。结论:这种以eus为基础的方位图改善了放射学上具有挑战性的pcl的恶性预测,为个性化治疗提供了临床应用。外部验证是必要的,以确认其普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
5.30%
发文量
222
审稿时长
3-8 weeks
期刊介绍: The Scandinavian Journal of Gastroenterology is one of the most important journals for international medical research in gastroenterology and hepatology with international contributors, Editorial Board, and distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信