Lei Qi, Fengyuan Zhang, Kexin Wang, Bingqian Chen, Xia Li, Jin Xu, Jiacheng Sun, Boya Liu, Zihui Gao, Yanan Ji, Leilei Gong, Youhua Wang, Xinlei Yao, Xiaosong Gu, Hualin Sun
{"title":"Advancements in skeletal muscle tissue engineering: strategies for repair and regeneration of skeletal muscle beyond self-repair.","authors":"Lei Qi, Fengyuan Zhang, Kexin Wang, Bingqian Chen, Xia Li, Jin Xu, Jiacheng Sun, Boya Liu, Zihui Gao, Yanan Ji, Leilei Gong, Youhua Wang, Xinlei Yao, Xiaosong Gu, Hualin Sun","doi":"10.1093/rb/rbaf050","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle is a vital organ of exercise and energy metabolism, playing a crucial role in maintaining body posture, enabling movement and supporting overall health. When skeletal muscle undergoes minor injuries, it has the inherent ability to self-repair and regain function. However, the ability of skeletal muscle self-repair is affected in severe muscle damage, resulting in significant muscle loss and functional impairments. For the severe muscle injury, tissue engineering strategies are used as the new methods to promote the repair and regeneration of skeletal muscle. Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate skeletal muscle using seed cells, scaffolds, bioactive molecules or their combinations to reverse muscle loss caused by traumatic injury or congenital muscle defects. In this study, we provide an overview of the structure and contraction process of skeletal muscle, as well as its mechanisms of natural repair and regeneration. We describe the seed cells with myogenic potential and show natural, synthetic and composite biomaterials, as well as advanced technologies for manufacturing scaffolds used in SMTE. SMTE has broad prospects, but it still faces many challenges before clinical application. The continued advancement of muscle tissue engineering will yield innovative outcomes with significant clinical potential for skeletal muscle regeneration.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 ","pages":"rbaf050"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12212644/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbaf050","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Skeletal muscle is a vital organ of exercise and energy metabolism, playing a crucial role in maintaining body posture, enabling movement and supporting overall health. When skeletal muscle undergoes minor injuries, it has the inherent ability to self-repair and regain function. However, the ability of skeletal muscle self-repair is affected in severe muscle damage, resulting in significant muscle loss and functional impairments. For the severe muscle injury, tissue engineering strategies are used as the new methods to promote the repair and regeneration of skeletal muscle. Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate skeletal muscle using seed cells, scaffolds, bioactive molecules or their combinations to reverse muscle loss caused by traumatic injury or congenital muscle defects. In this study, we provide an overview of the structure and contraction process of skeletal muscle, as well as its mechanisms of natural repair and regeneration. We describe the seed cells with myogenic potential and show natural, synthetic and composite biomaterials, as well as advanced technologies for manufacturing scaffolds used in SMTE. SMTE has broad prospects, but it still faces many challenges before clinical application. The continued advancement of muscle tissue engineering will yield innovative outcomes with significant clinical potential for skeletal muscle regeneration.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.