Abolishing ANAC017-Mediated Mitochondria Retrograde Signalling Alleviates Ammonium Toxicity in  Arabidopsis thaliana.

IF 3.6 2区 生物学 Q1 PLANT SCIENCES
Meiyan Ren, Ricarda Jost, Ghazanfar Abbas Khan, Joshua Linn, Yanqiao Zhu, Oliver Berkowitz, Jennifer Selinski, James Whelan
{"title":"Abolishing ANAC017-Mediated Mitochondria Retrograde Signalling Alleviates Ammonium Toxicity in  Arabidopsis thaliana.","authors":"Meiyan Ren, Ricarda Jost, Ghazanfar Abbas Khan, Joshua Linn, Yanqiao Zhu, Oliver Berkowitz, Jennifer Selinski, James Whelan","doi":"10.1111/ppl.70353","DOIUrl":null,"url":null,"abstract":"<p><p>Ammonium (NH<sub>4</sub> <sup>+</sup>), an important nitrogen source, often fails to stimulate plant growth as a sole nitrogen source, a phenomenon known as ammonium toxicity syndrome. NH<sub>4</sub> <sup>+</sup> is believed to disrupt cellular redox status by increasing chloroplast reducing capacity and exporting excess reducing equivalents, which trigger retrograde signalling. The precise role of mitochondria in this process remains unclear. Here, we demonstrate that the loss of ARABIDOPSIS NAC DOMAIN TRANSCRIPTION FACTOR17 (ANAC017, rao2-1), a master regulator of mitochondrial retrograde signalling, significantly increased shoot biomass under both nitrate (NO<sub>3</sub> <sup>-</sup>) and NH<sub>4</sub> <sup>+</sup>, thus utilising NH<sub>4</sub> <sup>+</sup> more effectively than Col-0 wildtype. In contrast, loss of function of ALTERNATIVE OXIDASE1A (aox1a) improved recovery of nitrogen-starved seedlings with NO<sub>3</sub> <sup>-</sup> but had no effect with NH<sub>4</sub> <sup>+</sup>. Metabolomic analysis revealed that the rao2-1 mutant assimilated NH<sub>4</sub> <sup>+</sup> more efficiently than the wild type, incorporating it into nitrogen-rich metabolites. Transcriptomic analyses showed that with NO<sub>3</sub> <sup>-</sup> resupply, ANAC017 acted to stimulate photosynthesis, carbon fixation, and NO<sub>3</sub> <sup>-</sup> reduction. Under NH<sub>4</sub> <sup>+</sup> resupply, however, ANAC017 suppressed plastid biogenesis and metabolism through classical retrograde signalling pathways. In rao2-1, a variety of chloroplast retrograde pathways were de-repressed. Unlike NO<sub>3</sub> <sup>-</sup>, NH<sub>4</sub> <sup>+</sup> fails to generate the signals necessary to suppress ANAC017-dependent retrograde stress responses, thereby impairing nitrogen assimilation and growth.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 4","pages":"e70353"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214446/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70353","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonium (NH4 +), an important nitrogen source, often fails to stimulate plant growth as a sole nitrogen source, a phenomenon known as ammonium toxicity syndrome. NH4 + is believed to disrupt cellular redox status by increasing chloroplast reducing capacity and exporting excess reducing equivalents, which trigger retrograde signalling. The precise role of mitochondria in this process remains unclear. Here, we demonstrate that the loss of ARABIDOPSIS NAC DOMAIN TRANSCRIPTION FACTOR17 (ANAC017, rao2-1), a master regulator of mitochondrial retrograde signalling, significantly increased shoot biomass under both nitrate (NO3 -) and NH4 +, thus utilising NH4 + more effectively than Col-0 wildtype. In contrast, loss of function of ALTERNATIVE OXIDASE1A (aox1a) improved recovery of nitrogen-starved seedlings with NO3 - but had no effect with NH4 +. Metabolomic analysis revealed that the rao2-1 mutant assimilated NH4 + more efficiently than the wild type, incorporating it into nitrogen-rich metabolites. Transcriptomic analyses showed that with NO3 - resupply, ANAC017 acted to stimulate photosynthesis, carbon fixation, and NO3 - reduction. Under NH4 + resupply, however, ANAC017 suppressed plastid biogenesis and metabolism through classical retrograde signalling pathways. In rao2-1, a variety of chloroplast retrograde pathways were de-repressed. Unlike NO3 -, NH4 + fails to generate the signals necessary to suppress ANAC017-dependent retrograde stress responses, thereby impairing nitrogen assimilation and growth.

去除anac017介导的线粒体逆行信号减轻拟南芥铵毒性
铵(NH4 +)是一种重要的氮源,但作为唯一的氮源往往不能刺激植物生长,这一现象被称为铵中毒综合征。NH4 +被认为通过增加叶绿体还原能力和输出多余的还原当量来破坏细胞氧化还原状态,从而触发逆行信号。线粒体在这一过程中的确切作用尚不清楚。本研究表明,线粒体逆行信号的主要调控因子——拟南芥NAC域转录因子17 (ANAC017, rao2-1)的缺失,在硝酸盐(NO3 -)和NH4 +条件下均显著增加了茎部生物量,从而比Col-0野生型更有效地利用了NH4 +。相反,aox1a (ALTERNATIVE OXIDASE1A, aox1a)的功能丧失促进了NO3 -处理下氮饥饿幼苗的恢复,但对NH4 +没有影响。代谢组学分析显示,rao2-1突变体比野生型更有效地吸收了NH4 +,并将其纳入富氮代谢产物中。转录组学分析表明,在NO3 -补给的情况下,ANAC017能够促进光合作用、固碳和NO3 -还原。然而,在NH4 +补给下,ANAC017通过经典的逆行信号通路抑制质体的生物发生和代谢。在rao -1中,多种叶绿体逆行通路被解除抑制。与NO3 -不同,NH4 +不能产生抑制anac017依赖性逆行应激反应所需的信号,从而损害氮的同化和生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信