Photorefractive reservoir computing.

IF 3.1 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-07-01 DOI:10.1364/OL.564645
Sebastian Alveteg, Marc Sciamanna, Alex Fuerbach, Delphine Wolfersberger
{"title":"Photorefractive reservoir computing.","authors":"Sebastian Alveteg, Marc Sciamanna, Alex Fuerbach, Delphine Wolfersberger","doi":"10.1364/OL.564645","DOIUrl":null,"url":null,"abstract":"<p><p>Reservoir computing (RC) is a machine learning (ML) framework that has gained attention in recent years as the interest in alternative computing paradigms has grown. RC allows the utilization of physical systems to solve ML tasks. We demonstrate the use of the nonlinear photorefractive reservoir computer and perform tasks requiring both nonlinearity and memory, such as chaotic time series prediction. Changing the photorefractive response by adjusting the applied field and laser power controls the characteristics of the reservoir. Optimizing the characteristics of the reservoir for performing a 10-step Mackey-Glass (MG) time series prediction, we achieve a mean square error (MSE) of 5x10<sup>-4</sup>.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 13","pages":"4334-4337"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.564645","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Reservoir computing (RC) is a machine learning (ML) framework that has gained attention in recent years as the interest in alternative computing paradigms has grown. RC allows the utilization of physical systems to solve ML tasks. We demonstrate the use of the nonlinear photorefractive reservoir computer and perform tasks requiring both nonlinearity and memory, such as chaotic time series prediction. Changing the photorefractive response by adjusting the applied field and laser power controls the characteristics of the reservoir. Optimizing the characteristics of the reservoir for performing a 10-step Mackey-Glass (MG) time series prediction, we achieve a mean square error (MSE) of 5x10-4.

光折变储层计算。
储层计算(RC)是一种机器学习(ML)框架,近年来随着人们对替代计算范式的兴趣的增长而受到关注。RC允许利用物理系统来解决机器学习任务。我们演示了非线性光折变储层计算机的使用,并执行需要非线性和内存的任务,如混沌时间序列预测。通过调节外加电场和激光功率来改变光折变响应,从而控制储层的特性。通过优化储层特征,进行10步Mackey-Glass (MG)时间序列预测,我们获得了5 × 10-4的均方误差(MSE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信