Deep learning-enhanced image analysis for liquid crystal optical sensing.

IF 3.1 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-07-01 DOI:10.1364/OL.561960
Yuxingyue Zhang, Mengjun Liu, Jiamei Chen, Wenfeng Lin, Jinhan Xia, Minmin Zhang, Lingling Shui
{"title":"Deep learning-enhanced image analysis for liquid crystal optical sensing.","authors":"Yuxingyue Zhang, Mengjun Liu, Jiamei Chen, Wenfeng Lin, Jinhan Xia, Minmin Zhang, Lingling Shui","doi":"10.1364/OL.561960","DOIUrl":null,"url":null,"abstract":"<p><p>In liquid crystal (LC) sensors, each microliter of LC contains billions of molecules with numerous orientation combinations, generating thousands of optical images with diverse textures under polarized optical microscope according to internal or external actuation. In this work, we utilize the VGG16 (Visual Geometry Group) deep learning (DL) model to accelerate the analysis of LC optical images, enabling visualized and precise sensing applications. The trained model helps improve the LC sensing speed and sensitivity to achieve a classification accuracy of 0.9113 within 30 s when triggered by two representative surfactants, cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS). The average relative errors are reduced to 3.54 and 7.94%, respectively, in quantitatively sensing the insulin-specific aptamer and insulin. In addition, the sensing time decreases from 300 s (using gray scale intensity quantification) to 90 s for insulin recognition and concentration detection. DL has been proven to be a useful and powerful analytical tool in image analysis, improving the speed and accuracy of optical image-based sensors.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 13","pages":"4446-4449"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.561960","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In liquid crystal (LC) sensors, each microliter of LC contains billions of molecules with numerous orientation combinations, generating thousands of optical images with diverse textures under polarized optical microscope according to internal or external actuation. In this work, we utilize the VGG16 (Visual Geometry Group) deep learning (DL) model to accelerate the analysis of LC optical images, enabling visualized and precise sensing applications. The trained model helps improve the LC sensing speed and sensitivity to achieve a classification accuracy of 0.9113 within 30 s when triggered by two representative surfactants, cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS). The average relative errors are reduced to 3.54 and 7.94%, respectively, in quantitatively sensing the insulin-specific aptamer and insulin. In addition, the sensing time decreases from 300 s (using gray scale intensity quantification) to 90 s for insulin recognition and concentration detection. DL has been proven to be a useful and powerful analytical tool in image analysis, improving the speed and accuracy of optical image-based sensors.

基于深度学习的液晶光学传感图像分析。
在液晶(LC)传感器中,每微升LC包含数十亿个分子,具有无数的取向组合,在偏光显微镜下根据内部或外部驱动产生数千个具有不同纹理的光学图像。在这项工作中,我们利用VGG16(视觉几何组)深度学习(DL)模型来加速LC光学图像的分析,从而实现可视化和精确的传感应用。训练后的模型提高了LC传感速度和灵敏度,当两种具有代表性的表面活性剂十六烷基三甲基溴化铵(CTAB)和十二烷基硫酸钠(SDS)触发时,在30 s内的分类精度达到0.9113。定量检测胰岛素特异性适配体和胰岛素的平均相对误差分别降至3.54%和7.94%。此外,胰岛素识别和浓度检测的传感时间从300 s(使用灰度强度量化)减少到90 s。深度学习已被证明是一种有用而强大的图像分析工具,可以提高光学图像传感器的速度和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信