Miyang Luo, Jiayou Luo, Atipatsa C Kaminga, Jia Wei, Wen Dai, Yan Zhong, Ningan Xu, Xiongwei Li, Haixiang Zhou, Xiongfeng Pan
{"title":"Targeted metabolomics reveals bioactive inflammatory mediators from gut into blood circulation in children with NAFLD.","authors":"Miyang Luo, Jiayou Luo, Atipatsa C Kaminga, Jia Wei, Wen Dai, Yan Zhong, Ningan Xu, Xiongwei Li, Haixiang Zhou, Xiongfeng Pan","doi":"10.1038/s41522-025-00706-w","DOIUrl":null,"url":null,"abstract":"<p><p>Altered gut metabolites are important for the inflammatory progression in children with NAFLD. Fecal and plasma samples were collected from 145 subjects including 53 non-alcoholic fatty liver (NAFL), 39 nonalcoholic steatohepatitis (NASH) and 53 obese controls. We performed G350 targeted integrative metabolomics using high performance liquid chromatography mass spectrometry for fecal and plasma analysis of NAFL, NASH, and obese children. We found 9 metabolites involved in metabolic reprogramming of inflammation in NAFLD, such as lipid, carbohydrate, amino acid metabolism, and TCA cycle pathway. Moreover, 7 inflammation-related metabolites could discriminate NAFLD severity by machine learning model. This study identified three novel elevated inflammatory pathogenic metabolites and the relationship between increased inflammation, may be involved in TLR5/MYD88/NFκB pathway. These findings reveal that specific inflammatory metabolites entering the blood circulation from the gut are associated with disease severity and inflammatory pathogenesis in children with NAFLD.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"119"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12217130/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00706-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Altered gut metabolites are important for the inflammatory progression in children with NAFLD. Fecal and plasma samples were collected from 145 subjects including 53 non-alcoholic fatty liver (NAFL), 39 nonalcoholic steatohepatitis (NASH) and 53 obese controls. We performed G350 targeted integrative metabolomics using high performance liquid chromatography mass spectrometry for fecal and plasma analysis of NAFL, NASH, and obese children. We found 9 metabolites involved in metabolic reprogramming of inflammation in NAFLD, such as lipid, carbohydrate, amino acid metabolism, and TCA cycle pathway. Moreover, 7 inflammation-related metabolites could discriminate NAFLD severity by machine learning model. This study identified three novel elevated inflammatory pathogenic metabolites and the relationship between increased inflammation, may be involved in TLR5/MYD88/NFκB pathway. These findings reveal that specific inflammatory metabolites entering the blood circulation from the gut are associated with disease severity and inflammatory pathogenesis in children with NAFLD.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.