JunHong Xing, TianMing Niu, Tong Yu, BoShi Zou, ShuHui Fan, ChunFeng Wang, ChunWei Shi, DongXing Zhang, Nan Wang, YanLong Jiang, HaiBin Huang, Xin Cao, Yan Zeng, JianZhong Wang, Di Zhang, GuiLian Yang, WenTao Yang
{"title":"Gut microbiota-derived isovaleric acid ameliorates influenza virus infection via gut-lung axis.","authors":"JunHong Xing, TianMing Niu, Tong Yu, BoShi Zou, ShuHui Fan, ChunFeng Wang, ChunWei Shi, DongXing Zhang, Nan Wang, YanLong Jiang, HaiBin Huang, Xin Cao, Yan Zeng, JianZhong Wang, Di Zhang, GuiLian Yang, WenTao Yang","doi":"10.1038/s41522-025-00753-3","DOIUrl":null,"url":null,"abstract":"<p><p>H9N2 influenza virus infections represent a significant respiratory health concern, yet the functional role of gut microbiota during infection progression remains poorly understood. Here, we show that H9N2 infection causes dose-dependent alterations in gut microbial communities in a mammalian infection model, particularly the depletion of Prevotella species. Prophylactic administration of Prevotella copri improved survival and clinical outcomes in infected mice by restructuring the gut microbiome, promoting beneficial bacteria, and suppressing pathogens. Metabolomic profiling revealed increased isovaleric acid levels in the intestine and serum. Isovaleric acid pretreatment reduced pulmonary inflammation, alleviated tissue damage, and preserved epithelial integrity. Isovaleric acid pretreatment alleviates lung inflammation, reduces tissue damage, and maintains epithelial integrity. Additionally, isovaleric acid mitigates infection caused by the H1N1 influenza virus. These findings highlight the immunomodulatory role of gut commensals and their metabolites in antiviral defense, offering a new approach to influenza virus treatment.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"116"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216287/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00753-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
H9N2 influenza virus infections represent a significant respiratory health concern, yet the functional role of gut microbiota during infection progression remains poorly understood. Here, we show that H9N2 infection causes dose-dependent alterations in gut microbial communities in a mammalian infection model, particularly the depletion of Prevotella species. Prophylactic administration of Prevotella copri improved survival and clinical outcomes in infected mice by restructuring the gut microbiome, promoting beneficial bacteria, and suppressing pathogens. Metabolomic profiling revealed increased isovaleric acid levels in the intestine and serum. Isovaleric acid pretreatment reduced pulmonary inflammation, alleviated tissue damage, and preserved epithelial integrity. Isovaleric acid pretreatment alleviates lung inflammation, reduces tissue damage, and maintains epithelial integrity. Additionally, isovaleric acid mitigates infection caused by the H1N1 influenza virus. These findings highlight the immunomodulatory role of gut commensals and their metabolites in antiviral defense, offering a new approach to influenza virus treatment.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.