Cristina I Amador, Sofia Zoe Moscovitz, Lorrie Maccario, Jakob Herschend, Isabel-Sophie Kramer, Hannah Jeckel, Vaughn S Cooper, Knut Drescher, Thomas R Neu, Mette Burmølle, Henriette L Røder
{"title":"Evolution of genotypic and phenotypic diversity in multispecies biofilms.","authors":"Cristina I Amador, Sofia Zoe Moscovitz, Lorrie Maccario, Jakob Herschend, Isabel-Sophie Kramer, Hannah Jeckel, Vaughn S Cooper, Knut Drescher, Thomas R Neu, Mette Burmølle, Henriette L Røder","doi":"10.1038/s41522-025-00755-1","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial fitness and adaptability in microbial communities are influenced by interspecies interactions and spatial organization. This study investigated how these factors shape the evolutionary dynamics of Bacillus thuringiensis. A distinct phenotypic variant of B. thuringiensis emerged consistently under both planktonic and biofilm conditions, as well as in monospecies and mixed-species settings, but was strongly selected in biofilms and during coexistence with Pseudomonas defluvii and/or Pseudomonas brenneri. Compared to its ancestor, the variant exhibited shorter generation times, reduced sporulation, auto-aggregation, and lower biomass in mixed-species biofilms. Mutations in the spo0A regulator, which controls sporulation and biofilm matrix production, were identified in all variants. Proteomics revealed a reduction in TasA, a key matrix protein, in the variant but increased levels in co-culture with P. brenneri. These findings highlight how interspecies interactions drive B. thuringiensis diversification, promoting traits like reduced matrix production and species coexistence, with implications for microbial consortia applications in agriculture and biopesticides.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"118"},"PeriodicalIF":7.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00755-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial fitness and adaptability in microbial communities are influenced by interspecies interactions and spatial organization. This study investigated how these factors shape the evolutionary dynamics of Bacillus thuringiensis. A distinct phenotypic variant of B. thuringiensis emerged consistently under both planktonic and biofilm conditions, as well as in monospecies and mixed-species settings, but was strongly selected in biofilms and during coexistence with Pseudomonas defluvii and/or Pseudomonas brenneri. Compared to its ancestor, the variant exhibited shorter generation times, reduced sporulation, auto-aggregation, and lower biomass in mixed-species biofilms. Mutations in the spo0A regulator, which controls sporulation and biofilm matrix production, were identified in all variants. Proteomics revealed a reduction in TasA, a key matrix protein, in the variant but increased levels in co-culture with P. brenneri. These findings highlight how interspecies interactions drive B. thuringiensis diversification, promoting traits like reduced matrix production and species coexistence, with implications for microbial consortia applications in agriculture and biopesticides.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.