{"title":"Berberine chloride hydrate impairs Streptococcus mutans biofilm formation via inhibiting sortase A activity.","authors":"Yang Zhou, Fang Huang, Huancai Lin","doi":"10.1038/s41522-025-00756-0","DOIUrl":null,"url":null,"abstract":"<p><p>Dental caries is a biofilm-associated chronic progressive disease, results from the dissolution of mineralized tooth tissue by acidic generated from bacterial sugar fermentation. S. mutans, a prominent pathogen of dental caries, is acknowledged for its role in cariogenic biofilm formation, utilizing Sortase A (SrtA) to catalyse surface proteins, thus promoting biofilm formation. In our previous studies, the inhibitory effect of the berberine chloride hydrate (BH) on S. mutans biofilms was confirmed. Here, we further investigate the influence of BH on S. mutans biofilm-induced bovine enamel caries model and explore the effect of BH on S. mutans SrtA activity. We found that BH inhibited S. mutans biofilm formation in bovine enamel model, leading to a reduction in demineralization. Furthermore, we identified and characterized SrtA, which might catalyze SpaP of S. mutans to form fibrillar amyloid aggregates. Our findings showed that BH inhibited SrtA activity by binding to essential amino acid residues LEU-111, MET-123, and ARG-213. BH inhibited amyloid fibers formation by downregulating the expression of srtA gene, thus disrupting S. mutans biofilm formation. Taken together, our study provides new insight into the mechanism of antibiofilm activity of BH and reveals great potential for anticaries clinical applications.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"120"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219681/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00756-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dental caries is a biofilm-associated chronic progressive disease, results from the dissolution of mineralized tooth tissue by acidic generated from bacterial sugar fermentation. S. mutans, a prominent pathogen of dental caries, is acknowledged for its role in cariogenic biofilm formation, utilizing Sortase A (SrtA) to catalyse surface proteins, thus promoting biofilm formation. In our previous studies, the inhibitory effect of the berberine chloride hydrate (BH) on S. mutans biofilms was confirmed. Here, we further investigate the influence of BH on S. mutans biofilm-induced bovine enamel caries model and explore the effect of BH on S. mutans SrtA activity. We found that BH inhibited S. mutans biofilm formation in bovine enamel model, leading to a reduction in demineralization. Furthermore, we identified and characterized SrtA, which might catalyze SpaP of S. mutans to form fibrillar amyloid aggregates. Our findings showed that BH inhibited SrtA activity by binding to essential amino acid residues LEU-111, MET-123, and ARG-213. BH inhibited amyloid fibers formation by downregulating the expression of srtA gene, thus disrupting S. mutans biofilm formation. Taken together, our study provides new insight into the mechanism of antibiofilm activity of BH and reveals great potential for anticaries clinical applications.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.