Cuiping Guo, Hang Ruan, Wensheng Li, Yi Liu, Abdoul Razak Yacoubou Mahaman, Qian Guo, You Zhou, Rong Liu, Jianzhi Wang, Chenliang Zhou, Xiaochuan Wang, Shusheng Li
{"title":"Astrocyte-Derived CXCL10 Induces Neuronal Tau Hyperphosphorylation and Cognitive Impairments in Sepsis.","authors":"Cuiping Guo, Hang Ruan, Wensheng Li, Yi Liu, Abdoul Razak Yacoubou Mahaman, Qian Guo, You Zhou, Rong Liu, Jianzhi Wang, Chenliang Zhou, Xiaochuan Wang, Shusheng Li","doi":"10.1007/s12264-025-01445-w","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis-associated encephalopathy (SAE) is a severe neurological syndrome marked by widespread brain dysfunctions due to sepsis, yet the underlying mechanisms remain elusive. The current study, using a Lipopolysaccharide (LPS)-induced septic rat model, revealed the hyperphosphorylation of tau and cognitive impairments, accompanied by the release of inflammatory cytokines and activation of glial cells in the hippocampal dentate gyrus region of septic rats. Proteomic and bioinformatic analyses identified C-X-C motif chemokine ligand 10(CXCL10) as a central regulator of neuroinflammation. LPS triggered CXCL10 secretion in astrocytes, and astrocyte-conditioned medium from LPS-treated astrocytes induced tau hyperphosphorylation and synaptic deficits. Recombinant CXCL10 recapitulated these effects in vitro and in vivo. Blocking CXCL10-CXCR3 interaction reversed tau phosphorylation, synaptic impairment, and cognitive decline. Mechanistically, CXCL10-CXCR3 interaction activated CaMKII, driving tau hyperphosphorylation, while CaMKII inhibition restored synaptic protein levels. These findings establish CXCL10 as a key driver of tau pathology in SAE and suggest CXCL10-CXCR3 as a therapeutic target for sepsis-induced cognitive impairments.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01445-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sepsis-associated encephalopathy (SAE) is a severe neurological syndrome marked by widespread brain dysfunctions due to sepsis, yet the underlying mechanisms remain elusive. The current study, using a Lipopolysaccharide (LPS)-induced septic rat model, revealed the hyperphosphorylation of tau and cognitive impairments, accompanied by the release of inflammatory cytokines and activation of glial cells in the hippocampal dentate gyrus region of septic rats. Proteomic and bioinformatic analyses identified C-X-C motif chemokine ligand 10(CXCL10) as a central regulator of neuroinflammation. LPS triggered CXCL10 secretion in astrocytes, and astrocyte-conditioned medium from LPS-treated astrocytes induced tau hyperphosphorylation and synaptic deficits. Recombinant CXCL10 recapitulated these effects in vitro and in vivo. Blocking CXCL10-CXCR3 interaction reversed tau phosphorylation, synaptic impairment, and cognitive decline. Mechanistically, CXCL10-CXCR3 interaction activated CaMKII, driving tau hyperphosphorylation, while CaMKII inhibition restored synaptic protein levels. These findings establish CXCL10 as a key driver of tau pathology in SAE and suggest CXCL10-CXCR3 as a therapeutic target for sepsis-induced cognitive impairments.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.