Synthetic neurosurgical data generation with generative adversarial networks and large language models:an investigation on fidelity, utility, and privacy.
Austin A Barr, Eddie Guo, Brij S Karmur, Emre Sezgin
{"title":"Synthetic neurosurgical data generation with generative adversarial networks and large language models:an investigation on fidelity, utility, and privacy.","authors":"Austin A Barr, Eddie Guo, Brij S Karmur, Emre Sezgin","doi":"10.3171/2025.4.FOCUS25225","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Use of neurosurgical data for clinical research and machine learning (ML) model development is often limited by data availability, sample sizes, and regulatory constraints. Synthetic data offer a potential solution to challenges associated with accessing, sharing, and using real-world data (RWD). The aim of this study was to evaluate the capability of generating synthetic neurosurgical data with a generative adversarial network and large language model (LLM) to augment RWD, perform secondary analyses in place of RWD, and train an ML model to predict postoperative outcomes.</p><p><strong>Methods: </strong>Synthetic data were generated with a conditional tabular generative adversarial network (CTGAN) and the LLM GPT-4o based on a real-world neurosurgical dataset of 140 older adults who underwent neurosurgical interventions. Each model was used to generate datasets at equivalent (n = 140) and amplified (n = 1000) sample sizes. Data fidelity was evaluated by comparing univariate and bivariate statistics to the RWD. Privacy evaluation involved measuring the uniqueness of generated synthetic records. Utility was assessed by: 1) reproducing and extending clinical analyses on predictors of Karnofsky Performance Status (KPS) deterioration at discharge and a prolonged postoperative intensive care unit (ICU) stay, and 2) training a binary ML classifier on amplified synthetic datasets to predict KPS deterioration on RWD.</p><p><strong>Results: </strong>Both the CTGAN and GPT-4o generated complete, high-fidelity synthetic tabular datasets. GPT-4o matched or exceeded CTGAN across all measured fidelity, utility, and privacy metrics. All significant clinical predictors of KPS deterioration and prolonged ICU stay were retained in the GPT-4o-generated synthetic data, with some differences observed in effect sizes. Preoperative KPS was not preserved as a significant predictor in the CTGAN-generated data. The ML classifier trained on GPT-4o data outperformed the model trained on CTGAN data, achieving a higher F1 score (0.725 vs 0.688) for predicting KPS deterioration.</p><p><strong>Conclusions: </strong>This study demonstrated a promising ability to produce high-fidelity synthetic neurosurgical data using generative models. Synthetic neurosurgical data present a potential solution to critical limitations in data availability for neurosurgical research. Further investigation is necessary to enhance synthetic data utility for secondary analyses and ML model training, and to evaluate synthetic data generation methods across other datasets, including clinical trial data.</p>","PeriodicalId":19187,"journal":{"name":"Neurosurgical focus","volume":"59 1","pages":"E17"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurosurgical focus","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3171/2025.4.FOCUS25225","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Use of neurosurgical data for clinical research and machine learning (ML) model development is often limited by data availability, sample sizes, and regulatory constraints. Synthetic data offer a potential solution to challenges associated with accessing, sharing, and using real-world data (RWD). The aim of this study was to evaluate the capability of generating synthetic neurosurgical data with a generative adversarial network and large language model (LLM) to augment RWD, perform secondary analyses in place of RWD, and train an ML model to predict postoperative outcomes.
Methods: Synthetic data were generated with a conditional tabular generative adversarial network (CTGAN) and the LLM GPT-4o based on a real-world neurosurgical dataset of 140 older adults who underwent neurosurgical interventions. Each model was used to generate datasets at equivalent (n = 140) and amplified (n = 1000) sample sizes. Data fidelity was evaluated by comparing univariate and bivariate statistics to the RWD. Privacy evaluation involved measuring the uniqueness of generated synthetic records. Utility was assessed by: 1) reproducing and extending clinical analyses on predictors of Karnofsky Performance Status (KPS) deterioration at discharge and a prolonged postoperative intensive care unit (ICU) stay, and 2) training a binary ML classifier on amplified synthetic datasets to predict KPS deterioration on RWD.
Results: Both the CTGAN and GPT-4o generated complete, high-fidelity synthetic tabular datasets. GPT-4o matched or exceeded CTGAN across all measured fidelity, utility, and privacy metrics. All significant clinical predictors of KPS deterioration and prolonged ICU stay were retained in the GPT-4o-generated synthetic data, with some differences observed in effect sizes. Preoperative KPS was not preserved as a significant predictor in the CTGAN-generated data. The ML classifier trained on GPT-4o data outperformed the model trained on CTGAN data, achieving a higher F1 score (0.725 vs 0.688) for predicting KPS deterioration.
Conclusions: This study demonstrated a promising ability to produce high-fidelity synthetic neurosurgical data using generative models. Synthetic neurosurgical data present a potential solution to critical limitations in data availability for neurosurgical research. Further investigation is necessary to enhance synthetic data utility for secondary analyses and ML model training, and to evaluate synthetic data generation methods across other datasets, including clinical trial data.