Xiaolin Hou, Xiaoling Liao, Ruxiang Xu, Fan Fei, Bo Wu
{"title":"Open-source AI-assisted rapid 3D color multimodal image fusion and preoperative augmented reality planning of extracerebral tumors.","authors":"Xiaolin Hou, Xiaoling Liao, Ruxiang Xu, Fan Fei, Bo Wu","doi":"10.3171/2025.4.FOCUS24557","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop an advanced method for preoperative planning and surgical guidance using open-source artificial intelligence (AI)-assisted rapid 3D color multimodal image fusion (MIF) and augmented reality (AR) in extracerebral tumor surgical procedures.</p><p><strong>Methods: </strong>In this prospective trial of 130 patients with extracerebral tumors, the authors implemented a novel workflow combining FastSurfer (AI-based brain parcellation), Raidionics-Slicer (deep learning tumor segmentation), and Sina AR projection. Comparative analysis between AI-assisted 3D-color MIF (group A) and manual-3D-monochrome MIF (group B) was conducted, evaluating surgical parameters (operative time, blood loss, resection completeness), clinical outcomes (complications, hospital stay, modified Rankin Scale [mRS] scores), and technical performance metrics (processing time, Dice similarity coefficient [DSC], 95% Hausdorff distance [HD]).</p><p><strong>Results: </strong>The AI-3D-color MIF system achieved superior technical performance with brain segmentation in 1.21 ± 0.13 minutes (vs 4.51 ± 0.15 minutes for manual segmentation), demonstrating exceptional accuracy (DSC 0.978 ± 0.012 vs 0.932 ± 0.029; 95% HD 1.51 ± 0.23 mm vs 3.52 ± 0.35 mm). Clinically, group A demonstrated significant advantages with shorter operative duration, reduced intraoperative blood loss, higher rate of gross-total resection, lower complication incidence, and better postoperative mRS scores (all p < 0.05).</p><p><strong>Conclusions: </strong>The integration of open-source AI tools (FastSurfer/Raidionics) with AR visualization creates an efficient 3D-color MIF workflow that enhances anatomical understanding through color-coded functional mapping and vascular relationship visualization. This system significantly improves surgical precision while reducing perioperative risks, representing a cost-effective solution for advanced neurosurgical planning in resource-constrained settings.</p>","PeriodicalId":19187,"journal":{"name":"Neurosurgical focus","volume":"59 1","pages":"E12"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurosurgical focus","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3171/2025.4.FOCUS24557","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to develop an advanced method for preoperative planning and surgical guidance using open-source artificial intelligence (AI)-assisted rapid 3D color multimodal image fusion (MIF) and augmented reality (AR) in extracerebral tumor surgical procedures.
Methods: In this prospective trial of 130 patients with extracerebral tumors, the authors implemented a novel workflow combining FastSurfer (AI-based brain parcellation), Raidionics-Slicer (deep learning tumor segmentation), and Sina AR projection. Comparative analysis between AI-assisted 3D-color MIF (group A) and manual-3D-monochrome MIF (group B) was conducted, evaluating surgical parameters (operative time, blood loss, resection completeness), clinical outcomes (complications, hospital stay, modified Rankin Scale [mRS] scores), and technical performance metrics (processing time, Dice similarity coefficient [DSC], 95% Hausdorff distance [HD]).
Results: The AI-3D-color MIF system achieved superior technical performance with brain segmentation in 1.21 ± 0.13 minutes (vs 4.51 ± 0.15 minutes for manual segmentation), demonstrating exceptional accuracy (DSC 0.978 ± 0.012 vs 0.932 ± 0.029; 95% HD 1.51 ± 0.23 mm vs 3.52 ± 0.35 mm). Clinically, group A demonstrated significant advantages with shorter operative duration, reduced intraoperative blood loss, higher rate of gross-total resection, lower complication incidence, and better postoperative mRS scores (all p < 0.05).
Conclusions: The integration of open-source AI tools (FastSurfer/Raidionics) with AR visualization creates an efficient 3D-color MIF workflow that enhances anatomical understanding through color-coded functional mapping and vascular relationship visualization. This system significantly improves surgical precision while reducing perioperative risks, representing a cost-effective solution for advanced neurosurgical planning in resource-constrained settings.