Stable ultrafast graphene hot-electron source on optical fiber.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Guangjie Yao, Hao Hong, Xu Zhou, Kaifeng Lin, Huazhan Liu, Yilong You, Chang Liu, Ke Chen, Chi Li, Jianbo Yin, Zhujun Wang, Xuewen Fu, Qing Dai, Dapeng Yu, Kaihui Liu
{"title":"Stable ultrafast graphene hot-electron source on optical fiber.","authors":"Guangjie Yao, Hao Hong, Xu Zhou, Kaifeng Lin, Huazhan Liu, Yilong You, Chang Liu, Ke Chen, Chi Li, Jianbo Yin, Zhujun Wang, Xuewen Fu, Qing Dai, Dapeng Yu, Kaihui Liu","doi":"10.1038/s41467-025-60915-x","DOIUrl":null,"url":null,"abstract":"<p><p>A stable and durable ultrafast electron source is highly desirable for sophisticated vacuum electron technologies. However, free-space excitations based on ultrahigh-power or deep-ultraviolet pulsed lasers usually cause cathode material damage and mechanical vibration even under ultrahigh vacuum. In this work, we present a compact ultrafast electron source consisting of graphene integrated on an optical fiber, taking advantage of the ultrafast hot-electron emission from graphene and well-defined single-mode excitation from the optical fiber. With mild excitation (~1 GW/cm<sup>2</sup>, infrared laser), an ultrashort electron pulse (width of ~ 80 fs) with high stability (fluctuation ≤±0.5% in 8 hours) and longevity (T<sub>90</sub> > 500 hours) can be generated even under relatively high ambient pressure (up to 100 Pa). This compact source has been facilely integrated into a commercial electron microscope for time-resolved imaging and spectroscopy. Our graphene optical fiber-based ultrafast electron source offers a promising solution to support the development of vacuum electron instruments.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"5726"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219288/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60915-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A stable and durable ultrafast electron source is highly desirable for sophisticated vacuum electron technologies. However, free-space excitations based on ultrahigh-power or deep-ultraviolet pulsed lasers usually cause cathode material damage and mechanical vibration even under ultrahigh vacuum. In this work, we present a compact ultrafast electron source consisting of graphene integrated on an optical fiber, taking advantage of the ultrafast hot-electron emission from graphene and well-defined single-mode excitation from the optical fiber. With mild excitation (~1 GW/cm2, infrared laser), an ultrashort electron pulse (width of ~ 80 fs) with high stability (fluctuation ≤±0.5% in 8 hours) and longevity (T90 > 500 hours) can be generated even under relatively high ambient pressure (up to 100 Pa). This compact source has been facilely integrated into a commercial electron microscope for time-resolved imaging and spectroscopy. Our graphene optical fiber-based ultrafast electron source offers a promising solution to support the development of vacuum electron instruments.

光纤上稳定的超快石墨烯热电子源。
一个稳定和持久的超快电子源是复杂的真空电子技术非常需要的。然而,基于超高功率或深紫外脉冲激光器的自由空间激发即使在超高真空条件下也会造成阴极材料损伤和机械振动。在这项工作中,我们提出了一种由集成在光纤上的石墨烯组成的紧凑的超快电子源,利用石墨烯的超快热电子发射和光纤的明确的单模激发。在温和的激发(~1 GW/cm2,红外激光)下,即使在相对较高的环境压力(高达100 Pa)下,也可以产生高稳定性(8小时波动≤±0.5%)和寿命(T90 > 500小时)的超短电子脉冲(宽度~ 80 fs)。这种紧凑的源已经很容易地集成到商用电子显微镜的时间分辨成像和光谱。我们基于石墨烯光纤的超快电子源为支持真空电子仪器的发展提供了一个有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信