Scalable modulation of CRISPR‒Cas enzyme activity using photocleavable phosphorothioate DNA.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Menglu Hu, Bingni Zhang, Yuanyue Shan, Feng Cao, Yihui Wang, Weiwei Qi, Xue Wang, Yuting Shen, Xinyi Guo, Mengmeng Zhang, Tian Tian, Wei Xie, Mingfeng Zhang, Fang Liang, Duanqing Pei, Xiaoming Zhou
{"title":"Scalable modulation of CRISPR‒Cas enzyme activity using photocleavable phosphorothioate DNA.","authors":"Menglu Hu, Bingni Zhang, Yuanyue Shan, Feng Cao, Yihui Wang, Weiwei Qi, Xue Wang, Yuting Shen, Xinyi Guo, Mengmeng Zhang, Tian Tian, Wei Xie, Mingfeng Zhang, Fang Liang, Duanqing Pei, Xiaoming Zhou","doi":"10.1038/s41467-025-61094-5","DOIUrl":null,"url":null,"abstract":"<p><p>The regulation of CRISPR‒Cas activity is critical for developing advanced biotechnologies. Optical control of CRISPR‒Cas system activity can be achieved by modulation of Cas proteins or guide RNA (gRNA), but these approaches either require complex protein engineering modifications or customization of the optically modulated gRNAs according to the target. Here, we present a method, termed photocleavable phosphorothioate DNA (PC&PS DNA)-mediated regulation of CRISPR‒Cas activity (DNACas), that is versatile and overcomes the limitations of conventional methods. In DNACas, CRISPR‒Cas activity is silenced by the affinity binding of PC&PS DNA and restored through light-triggered chemical bond breakage of PC&PS DNA. The universality of DNACas is demonstrated by adopting the PC&PS DNA to regulate various CRISPR‒Cas enzymes, achieving robust light-switching performance. DNACas is further adopted to develop a light-controlled one-pot LAMP-BrCas12b detection method and a spatiotemporal gene editing strategy. We anticipate that DNACas could be employed to drive various biotechnological advances.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"5939"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216424/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61094-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The regulation of CRISPR‒Cas activity is critical for developing advanced biotechnologies. Optical control of CRISPR‒Cas system activity can be achieved by modulation of Cas proteins or guide RNA (gRNA), but these approaches either require complex protein engineering modifications or customization of the optically modulated gRNAs according to the target. Here, we present a method, termed photocleavable phosphorothioate DNA (PC&PS DNA)-mediated regulation of CRISPR‒Cas activity (DNACas), that is versatile and overcomes the limitations of conventional methods. In DNACas, CRISPR‒Cas activity is silenced by the affinity binding of PC&PS DNA and restored through light-triggered chemical bond breakage of PC&PS DNA. The universality of DNACas is demonstrated by adopting the PC&PS DNA to regulate various CRISPR‒Cas enzymes, achieving robust light-switching performance. DNACas is further adopted to develop a light-controlled one-pot LAMP-BrCas12b detection method and a spatiotemporal gene editing strategy. We anticipate that DNACas could be employed to drive various biotechnological advances.

利用光可切割的硫代DNA对CRISPR-Cas酶活性的可扩展调节。
CRISPR-Cas活性的调控对于开发先进的生物技术至关重要。CRISPR-Cas系统活性的光学控制可以通过调节Cas蛋白或引导RNA (gRNA)来实现,但这些方法要么需要复杂的蛋白质工程修饰,要么需要根据目标定制光学调制的gRNA。在这里,我们提出了一种方法,称为光切割可磷酸化DNA (PC&PS DNA)介导的CRISPR-Cas活性调控(DNACas),它是通用的,克服了传统方法的局限性。在DNA acas中,CRISPR-Cas的活性被PC&PS DNA的亲和结合沉默,并通过光触发PC&PS DNA的化学键断裂而恢复。通过采用PC&PS DNA调控各种CRISPR-Cas酶,实现稳健的光开关性能,证明了DNA acas的普遍性。进一步采用DNACas开发光控一锅LAMP-BrCas12b检测方法和时空基因编辑策略。我们预计dna可以用于推动各种生物技术的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信