{"title":"Reversible writing of high-density dislocations with multidimensional controllability in PMN-PT crystal.","authors":"Rongze Ma, Bo Zhang, Guisheng Xu, Feifei Wang, Xiaofeng Liu, Zhuo Wang, Jianrong Qiu","doi":"10.1038/s41467-025-61095-4","DOIUrl":null,"url":null,"abstract":"<p><p>Controllable dislocations are highly desirable for modulating the physicochemical properties of materials and innovating scientific research and engineering applications. Therefore, technologies that can flexibly manipulate dislocations with high precision have long been sought. Recently, non-mechanical approaches have shown great potential in dislocation manipulation but are mostly restricted to the limited control degrees of freedom. Here, we present a method for reversible writing of high-density dislocations (~10<sup>16 </sup>m<sup>-2</sup>) in Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>-PbTiO<sub>3</sub> (PMN-PT) single crystals by ultrafast laser-driven energy deposition. The dislocations exhibit a multi-dimensionally controllable spatial distribution and can be repeatedly written and erased in 3D space. We reveal that the ultrafast laser-matter interaction-induced anisotropic field enhancement cooperates with the orientation of ferroelectric domains to dominate the dislocation manipulation, and the annihilation behavior of high-density dislocations is the nature of their erasable characteristics. This study provides an effective approach for multi-degree-of-freedom dislocation control by non-mechanical stimuli and opens up new possibilities for dislocation-mediated innovative applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"5966"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12217922/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61095-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Controllable dislocations are highly desirable for modulating the physicochemical properties of materials and innovating scientific research and engineering applications. Therefore, technologies that can flexibly manipulate dislocations with high precision have long been sought. Recently, non-mechanical approaches have shown great potential in dislocation manipulation but are mostly restricted to the limited control degrees of freedom. Here, we present a method for reversible writing of high-density dislocations (~1016 m-2) in Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals by ultrafast laser-driven energy deposition. The dislocations exhibit a multi-dimensionally controllable spatial distribution and can be repeatedly written and erased in 3D space. We reveal that the ultrafast laser-matter interaction-induced anisotropic field enhancement cooperates with the orientation of ferroelectric domains to dominate the dislocation manipulation, and the annihilation behavior of high-density dislocations is the nature of their erasable characteristics. This study provides an effective approach for multi-degree-of-freedom dislocation control by non-mechanical stimuli and opens up new possibilities for dislocation-mediated innovative applications.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.